Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CWRU engineering researchers report nanoscale energy-efficient switching devices at IEDM 2013

This image shows the Case Western Reserve measurement apparatus for studying the SiC NEMS logic building blocks. Insets: (a) An illustration of the basic device structure. (b) A circuit diagram for device testing. (c) Representative measured data of abrupt and non-leakage switching characteristics. (d) Recorded long cycles of robust switching in ambient air.

Credit: Image credit: Philip Feng / Case Western Reserve Univeristy
This image shows the Case Western Reserve measurement apparatus for studying the SiC NEMS logic building blocks. Insets: (a) An illustration of the basic device structure. (b) A circuit diagram for device testing. (c) Representative measured data of abrupt and non-leakage switching characteristics. (d) Recorded long cycles of robust switching in ambient air.

Credit: Image credit: Philip Feng / Case Western Reserve Univeristy

Abstract:
By relentlessly miniaturizing a pre-World War II computer technology, and combining this with a new and durable material, researchers at Case Western Reserve University have built nanoscale switches and logic gates that operate more energy-efficiently than those now used by the billions in computers, tablets and smart phones.

CWRU engineering researchers report nanoscale energy-efficient switching devices at IEDM 2013

Cleveland, OH | Posted on December 9th, 2013

Electromechanical switches were the building blocks of electronics before the solid-state transistor was developed during the war. A version made from silicon carbide, at the tiniest of scales, snaps on and off like a light switch, and with none of the energy-wasting current leakage that plagues the smallest electronics today.

The scientists report their findings today at the International Electron Devices Meeting in Washington D.C.

The tiny switch's moving part is only about one cubic micron in volume, more than a thousand times smaller than devices made in today's mainstream microelectromechanical systems (MEMS). Thus, this switch can move much faster and is much lighter.

The switch has also proved durable, operating for more than 10 million cycles in air, at ambient temperatures and high heat without loss of performance—far longer than most other candidates for a non-leaking switch.

Such tolerance may enable electronics-makers to build a computer that operates within the intense heat of a nuclear reactor or jet engine. Silicon transistors start to deteriorate at around 250 degrees Celsius (480 degrees Fahrenheit). Testing has shown the silicon carbide switches operate at more than 500 degrees Celsius (930 degrees Fahrenheit).

The development is significant because switching devices are at the heart of computing and communications technologies.

"In our pockets and backpacks, nowadays we often carry mobile devices that consist of billions of such building blocks, which are switching on and off to perform the information processing functions," explained Philip Feng, professor of electrical engineering and computer science at Case Western Reserve and leader of the project.

Silicon-based metal-oxide-semiconductor field effect transistors, called MOSFETs, are the dominant switching devices in integrated circuits and have led to many extraordinary technologies enjoyed today, Feng said. But continued miniaturization of silicon MOSFETs over the past several decades has recently slowed, as power consumption and heat dissipation have become major challenges.

Energy is lost and heat generated because nanoscale MOFSETs leak like an old faucet. Electrons continue to travel through a switch that's turned off.

"The silicon switches are leaking power at about 1 to 10 nanowatts each," Feng said. "When you have a billion of these on a computer chip, you're losing a few to tens of watts of power. That will consume the battery you carry, even when the transistors are not actively performing computing functions."

Large data centers aren't only wasting that energy, they're paying the costs of cooling to prevent computers from overheating.

Tina He, Prof. Feng's PhD student in electrical engineering and computer science at Case School of Engineering, will provide details about making and testing the switches in her presentation, Silicon Carbide (SiC) Nanoelectromechanical Switches and Logic Gates with Long Cycles and Robust Performance in Ambient Air and High Temperature, at the international meeting. She is scheduled to speak in the "Nano Device Technology - Steep-Slope Devices" session at 3:40 p.m. (Eastern U.S. time), Monday, Dec. 9.

The research team has made three-terminal, gate-controlled switches and different kinds of logic gates - fundamental elements used in computing and communications.

"Compared to silicon and other common materials, SiC is quite special because it is much more resistive to oxidation, to chemical contaminants and to wear," Feng said. "Those properties should lend themselves to devices with more robust performance while protecting them from harsh operating environments."

###

Co-authors of the conference paper are: Case Western Reserve graduate students Rui Yang and Vaishnavi Ranganathan, staff engineer Srihari Rajgopal, electrical engineering and computer science professors Swarup Bhunia and Mehran Mehregany, and Mary Anne Tupta, senior research engineer from Keithley Instruments Inc.

The work is supported by grants from the Defense Advanced Research Projects Agency's Microsystems Technology Office and the National Science Foundation.

The Institute of Electrical and Electronics Engineers has hosted the international meeting for nearly 60 years, to report breakthroughs in a growing range of electronic device technology.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project