Home > Press > Architects of a nanoworld behind the screens
Abstract:
New types of building blocks for electronics will be the future, that is clear for Nauta as well. "It is already possible to give a molecule the functionality of a transistor. But compare that to the huge complexity of current chips, with eight or nine ‘highways' above each other, connecting all elements. How to reach this using these new molecules? There's still a huge gap there. Silicon research and industry has shown an immense effort, that's still going on for some time." He stresses that current chips like microprocessors already contain billions of transistor with sizes in the nanometer domain. Microelectronics had become nanoelectronics already. "They are so small, around 22 nanometer, that you can count the individual atoms."
Not self-evident at all
In his lecture ‘The invisible circuit', Nauta asks his audience to imagine a world without chips. "If we wouldn't have chips in our daily life, suddenly a lot of things like social media and internet, aren't possible anymore. That would really mean ‘back to the fifties'." That is: almost back to the time the very first transistor was invented, in 1947. Still, we take it for granted whenever there is a new generation of smartphones, tablets or other gadgets in the shops. "This is not self-evident at all. This requires top research and huge investments in new chip factories." Nauta's own group, one of the world's leading groups in chip design, delivered several inventions that found their way to smart phones and TV's. A well-known example is their noise-cancelling circuit that surprised the semiconductor world at first, but is a textbook example by now.
Cognitive radio
Nauta specializes in circuits translating the analogue outside world into the digital inside of the smartphone: the part of the circuitry taking care of transmitting and receiving, or ‘radio'. Complexity is growing rapidly there: with more and more mobile standards, a good quality has to be guaranteed with low noise, and if possible, using less energy. And all that on the tiniest possible silicon surface. "For each standard, you would need a separate filter. But that would take far too much surface. We now develop a filter that is tunable and can be integrated on-chip. That's a development the whole world is looking at, because integration of conventional filters is almost impossible. Within five years, it will be commercially available." This new type of filter would also be the candidate for new radio techniques employing every free part of the frequency spectrum, so-called cognitive radio.
Even if Moore's Law, that predicts a doubling of the amount of components on every square millimeter of silicon every two years, comes to a halt due to physical limits, a creative designer still has years to go, according to Nauta. These physical limits have been pushed for decades now: as long as it is viable economically, industry will keep investing.
####
For more information, please click here
Contacts:
Wiebe van der Veen
+31612185692
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||