Home > Press > Tiny ‘Lego’ blocks build Janus nanotubes with potential for new drugs and water purification
![]() |
Abstract:
Researchers have created tiny protein tubes named after the Roman god Janus which may offer a new way to accurately channel drugs into the body's cells.
Using a process which they liken to molecular Lego, scientists from the University of Warwick and the University of Sydney have created what they have named ‘Janus nanotubes' - very small tubes with two distinct faces. The study is published in the journal Nature Communications.
They are named after the Roman god Janus who is usually depicted as having two faces, since he looks to the future and the past.
The Janus nanotubes have a tubular structure based on the stacking of cyclic peptides, which provide a tube with a channel of around 1nm (around one millionth of a mm) - the right size to allow small molecules and ions to pass through.
Attached to each of the cyclic peptides are two different types of polymers, which tend to de-mix and form a shell for the tube with two faces - hence the name Janus nanotubes.
The faces provide two remarkable properties - in the solid state, they could be used to make solid state membranes which can act as molecular ‘sieves' to separate liquids and gases one molecule at a time. This property is promising for applications such as water purification, water desalination and gas storage.
In a solution, they assemble in lipids bilayers, the structure that forms the membrane of cells, and they organise themselves to form pores which allow the passage of molecules of precise sizes. In this state they could be used for the development of new drug systems, by controlling the transport of small molecules or ions inside cells.
Sebastien Perrier of the University of Warwick said: "There is an extraordinary amount of activity inside the body to move the right chemicals in the right amounts both into and out of cells.
"Much of this work is done by channel proteins, for example in our nervous system where they modulate electrical signals by gating the flow of ions across the cell membrane.
"As ion channels are a key component of a wide variety of biological process, for example in cardiac, skeletal and muscle contraction, T-cell activation and pancreatic beta-cell insulin release, they are a frequent target in the search for new drugs.
"Our work has created a new type of material - nanotubes - which can be used to replace these channel processes and can be controlled with a much higher level of accuracy than natural channel proteins.
"Through a process of molecular engineering - a bit like molecular Lego - we have assembled the nanotubes from two types of building blocks - cyclic peptides and polymers.
"Janus nanotubes are a versatile platform for the design of exciting materials which have a wide range of application, from membranes - for instance for the purification of water, to therapeutic uses, for the development of new drug systems."
The study, Janus cyclic peptide-polymer nanotubes, was authored by Maarten Danial, Carmen My-Nhi Tran, Philip G. Young, Sebastien Perrier, & Katrina A. Jolliffe
####
For more information, please click here
Contacts:
Anna Blackaby
International Press Officer
Tel: 44 024 7657 5910
Mob: 44 07785 433155
or
Kelly Parkes-Harrison
Senior Press and Communications Manager
Tel: 44 024 7615 0868
Mob: 44 07824 540863
Sebastien Perrier
44 07528422246
Copyright © University of Warwick
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Water
Taking salt out of the water equation October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |