Home > Press > Lawrence Livermore researchers unveil carbon nanotube jungles to better detect molecules
![]()  | 
| Atomic Force Microscopy (AFM) picture of the catalyst for the nanotube growth. | 
Abstract:
Researchers from Lawrence Livermore National Laboratory (LLNL) and the Swiss Federal Institute of Technology (ETH) in Zurich have developed a new method of using nanotubes to detect molecules at extremely low concentrations enabling trace detection of biological threats, explosives and drugs.
The joint research team, led by LLNL Engineer Tiziana Bond and ETH Scientist Hyung Gyu Park, are using spaghetti-like, gold-hafnium-coated carbon nanotubes (CNT) to amplify the detection capabilities in surface-enhanced Raman spectroscopy (SERS).
SERS is a surface-sensitive technique that enhances the inelastic scattering of photons by molecules adsorbed on rough metal surfaces or by nanostructures.
Bond and her collaborators are using metal-coated nanotubes bunched together like a jungle canopy to amplify the signals of both the incident and Raman scattered light by exciting local electron plasmons.
Their real breakthrough, however, is discovering the use of an intermediate dielectric coating (hafnium) to block the quenching of the free electrons in the metal by the CNTs, allowing the nanotubes to function uninhibited.
By preserving the electrons and enhancing the light through the use of nanotube jungles, the team is able to significantly increase the SERS' detection sensitivities in CNTs structures.
The hafnium coating enables the bunching of gold nanotubes that creates a thick canopy full of sensitive spots for detection. The nanotubes enable incident light to be trapped and focused at the numerous contact points and crevices, allowing the Raman-scattered light to pass through. This enables portable Raman devices to detect and identify specific airborne substances randomly.
 "This is a very important discovery in our efforts to improve the use of SERS devices," Bond said. "We gained this valuable knowledge through multidisciplinary basic research and approaching the problem with a rational design."
Bond and Park hope their engineered material will eventually be used in portable devices to conduct on-site analysis of chemical impurities such as environmental pollutants or pharmaceutical residues in water. Other applications include the real-time point-of-care monitoring of physiological levels for the biomedical industry and fast screening of drugs and toxins for law enforcement.
"We are in the process of filing a patent for our new discovery," Bond said.
####
About DOE/Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.
For more information, please click here
Contacts:
Ken Ma
925-423-7602
Copyright © DOE/Lawrence Livermore National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 Bond and Park's discovery was recently featured on the cover of the issue of Advanced Materials:
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Laboratories
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Environment
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
    SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||