Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dyesol to Join SPECIFIC as an Industrial Partner

Abstract:
Dyesol has entered formal discussions to finalise the terms for its role as an Industrial Partner at the Sustainable Product Engineering Centre for Innovative Functional Industrial Coatings (SPECIFIC), South Wales. SPECIFIC is a £20 million, 5-year project, located at the Baglan Bay Innovation and Knowledge Centre and a powerful partnership that includes leading U.K. university groups such as Swansea, Imperial College, Bath, Bangor, Cardiff, Glyndwr and Strathclyde as well as multi-national companies, including BASF, Pilkington and Tata. SPECIFIC is considered a world leader in innovation and functionalising the building envelope for energy capture, storage and release.

Dyesol to Join SPECIFIC as an Industrial Partner

Queanbeyan, Australia | Posted on November 4th, 2013

With SPECIFIC, Dyesol will focus on Solid State DSC Electrical Optimisation and Process Engineering. Dyesol's inclusion in SPECIFIC is intended to accelerate the industrialisation of its revolutionary solar technology by focusing on key areas of development. Dyesol's recently completed Business and Technology Development Plans seek to maximise financial returns on its significant historical investment in research and development.

The SPECIFIC initiative is in addition to Dyesol's engagement in advanced negotiations to increase its presence at EPFL in Lausanne, where it will have an expert team to fast-track the scale-up of the new solid-state material set. Together, Dyesol and EPFL have achieved 15% solar conversion efficiency and are confident of further improvements. Solid State DSC is projected to achieve a lower Levelised Cost of Electricity than 1st and 2nd Generation solar technologies and compete successfully with fossil fuels without the assistance of feed-in tariffs. The co-ordinated activity aims to achieve mass manufacture of solid-state DSC glass and steel Building Integrated Photovoltaic applications by 2016/17.

The rationalisation of its global activities will result in Dyesol closing DyeTec Solar in the US where it has worked with Pilkington North America, a subsidiary of Nippon Sheet Glass of Japan. Dyesol is also well advanced in its initiatives to secure a substantial pre-commercialisation government grant which, if successful, will accelerate solid state DSC glass development activities in Australia.

Richard Caldwell, Dyesol's Executive Chairman commented: "Dyesol's collaboration with SPECIFIC is another important step in the industrialisation of our revolutionary DSC technology. The new positioning in Wales provides us with strong independence and allows us to have greater control over exploitation of our IP and industrialisation. The UK and European markets have always been a high priority for Dyesol and we feel very gratified to be recognised by SPECIFIC in this meaningful way. In our view, Wales is maintaining its global, government leadership in responsibly providing for the New Economy."

For more information on SPECIFIC please see www.specific.eu.com.

####

About Dyesol Limited
Dyesol is a global supplier of Dye Solar Cell (DSC) materials, technology and know-how. DSC is a photovoltaic technology enabling metal, glass and polymeric based products in the building, transport and electronics sectors to generate energy and improve energy efficiency. Dyesol partners with leading multinational companies who possess significant market share and established routes-to-market. The company is listed on the Australian Stock Exchange (DYE), the German Open Market (D5I), and is trading on the OTCQX (DYSOY) through its depositary BNY Mellon. Learn more and subscribe to our mailing list: www.dyesol.com.

About Dye Solar Cell Technology

DSC technology can best be described as ‘artificial photosynthesis’ using a layer of nano-titania (a pigment used in white paints and tooth paste) and light harvester deposited on glass, metal or polymer substrates. Light striking the harvester excites electrons which are absorbed by the titania to become an electric current. Compared to conventional silicon based photovoltaic technology, Dyesol’s technology has lower cost and embodied energy in manufacture, it produces electricity more efficiently even in low light conditions and can be directly incorporated into buildings by replacing conventional glass panels or metal sheets rather than taking up roof or extra land area.

For more information, please click here

Contacts:
Media & Investor Relations Contacts:

Dyesol Headquarters
Angela Geary
Dyesol Brand Manager
Tel: +61 (0)2 6299 1592


Australia
Viv Hardy
Callidus PR
Tel: +61(0)2 9283 4113
+61 (0)411 208 951


Germany & Europe
Eva Reuter
DR Reuter Investor Relations
Tel: +49 177 605 8804

Copyright © Dyesol Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project