Home > Press > Synthesis of Zinc Sulfide Nanoparticles in Mild Conditions
Abstract:
Iranian researchers succeeded in the synthesis of zinc sulfide nanoparticles with dimension of 21 nm through hydrothermal method.
The product is semi-conductor and can be used in optics, photo-electronics, sensors, catalysts, and so on.
Nano-crystalline of metals, metal oxides, and semi-conductors are very popular due to their unique mechanical, electrical, optical, magnetic, and chemical properties. The reason is quantum effects, to the extent that electrical, optical, and other properties are highly dependent on particle size at small dimensions.
Dr. Maryam Mohammadi Kish, an assistant professor in inorganic chemistry from Kharazmi University of Tehran, elaborated on the research, and stated, "The main objective of this research was to synthesize zinc sulfide at nanometric scale, and to optimize the synthesis method by comparing various temperatures and times, and finally to determine the band gap of the products. Size control is one of the most important parameters in the synthesis of semi-conductors. However, the most important parameter is particle size distribution. In this research, nanoparticles were synthesized at 21 nm with appropriate size distribution."
Among various methods, hydrothermal method is an appropriate one for the synthesis of nanoparticles due to its low cost, high performance, and the ability to be used at large scale. Among the advantages of this research, mention can be made of the use of simple initial material, appropriate temperature and time conditions, and simple laboratory facilities. One of the results of the research was the application of hydrothermal method to synthesize zinc sulfide nanoparticles with dimension of 21 nm. The product is an II-IV semi-conductor with a direct band gap of 3.65-3.87 eV.
Results of the research have been published in details in April 2013 in Ceramics International, vol. 39, issue 3, pp. 3173-3181.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||