Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New microfluidic approach for the directed assembly of functional materials

An optical micrograph of the microchannel junction with red dye flow-focused in water shows experimental conditions used for nanostructure assembly.
An optical micrograph of the microchannel junction with red dye flow-focused in water shows experimental conditions used for nanostructure assembly.

Abstract:
University of Illinois researchers have developed a new approach with applications in materials development for energy capture and storage and for optoelectronic materials.

New microfluidic approach for the directed assembly of functional materials

Urbana, IL | Posted on October 8th, 2013

According to Charles Schroeder, an assistant professor in the Department of Chemical and Biomolecular Engineering, the results show that peptide precursor materials can be aligned and oriented during their assembly into polypeptides using tailored flows in microfluidic devices.

The research was a collaboration between the labs of Schroeder and William Wilson, a research professor in materials science and engineering and the Frederick Seitz Materials Research Laboratory at Illinois. Their findings were recently published in a paper entitled, "Fluidic-directed assembly of aligned oligopeptides with pi-conjugated cores" in Advanced Materials.

"A grand challenge in the field of materials science is the ability to direct the assembly of advanced materials for desired functionality," says Amanda Marciel, a graduate student in Schroeder's research group. "However, design of new materials is often hindered by our inability to control the structural complexity of synthetic polymers."

"To address the need for controlled processing of functional materials, we developed a microfluidic-based platform to drive the assembly of synthetic oligopeptides," Marciel explained. "Using a microfluidic device, we assembled DFAA and DFAG into one dimensional nanostructures using a planar extensional flow generated in a cross-slot geometry."

The dynamics of the assembly process can be followed in real-time using fluorescence microscopy and spectroscopy.

"The assembled nanostructure is spectrally distinct from the synthetic oligopeptide monomer, which can be used to monitor the dynamics of nanostructure formation," Marciel added. "Using precise hydrodynamic control of the microfluidic platform, the researchers demonstrated the formation of multiple parallel-aligned synthetic oligopeptide nanostructures and their subsequent disassembly. By modulating volumetric flow rates in the device they were able to manipulate the position of the fluid-fluid interface at the microchannel junction.

During this process, nanostructures initially formed at the reactive laminar interface are submerged into the advancing acidic stream, thereby preserving the integrity of the preformed nanostructures while initiating formation of an aligned nanostructure at the new interface position.

Marciel says this research shows that is possible to use microfluidic-based flows to direct the structural assembly of polymers into functional materials.

"Our approach has the potential to enable reproducible and reliable fabrication of advanced materials." Marciel said. "Achieving nanoscale ordering in assembled materials has become the primary focus of recent efforts in the field. These approaches will ultimately lead to desired morphology in functional materials, which will enhance their ability to capture and store energy."

"Our research team is quite interdisciplinary and has a unique range of skills to study materials assembly," Schroeder said. "Our group has extensive experience in the design and fabrication of microfluidic devices and fluorescence imaging of soft materials." The team's ultimate goal is to assemble the organic equivalent of typical semiconducting materials.

"This would open the door to developments of materials with application to photovoltaic devices, solid-state lighting, energy harvesting, and catalytic processes," she said.

In addition to Marciel, Schroeder, and Wilson, the paper's authors included, Melikhan Tanyeri, Brian D. Wall, and John D. Tovar. The team used spectroscopic and analytical tools at the Frederick Seitz Materials Research Lab to conduct its research.

####

For more information, please click here

Contacts:
Charles Schroeder

217-333-3906

Writer:
Sarah Williams
assistant director of communications
Department of Chemical and Biomolecular Engineering
217/244-0541

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper - “Fluidic-directed assembly of aligned oligopeptides with pi-conjugated cores”:

Related News Press

News and information

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Discoveries

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Materials/Metamaterials/Magnetoresistance

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Announcements

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project