Home > Press > A swarm on every desktop: Robotics experts learn from public: Swarm robotics researchers at Rice University gather data with online game
Postdoctoral researcher Aaron Becker designed a new control algorithm that allows swarms of r-one robots from Rice's Multi-Robot Systems Laboratory to complete complex tasks -- including spelling out Rice's trademark R.
CREDIT: Jeff Fitlow/Rice University |
Abstract:
The next experiment from Rice University's Multi-Robot Systems Laboratory (MRSL) could happen on your desktop. The lab's researchers are refining their control algorithms for robotic swarms based upon data from five free online games that anyone can play.
"What we learn from the game and our lab experiments applies directly to real-world challenges," said Aaron Becker, a postdoctoral researcher at MRSL. "For example, if a doctor had a swarm of several thousand microscopic robots, each carrying a tiny payload of anti-cancer drugs, might it be possible to have them all converge on a tumor using magnetic signals from an MRI machine?"
In the games, players use simple commands to move groups of robots through mazes and around obstacles. Sometimes the goal is to push a larger object to a particular spot. Other times the goal is to move the collective to a target or to have it assume a specific shape. Each time a game is played, the website collects information about how the task was completed. Becker said the data will be used to develop new control algorithms for robot swarms.
"The data from these games will help us better understand how to use multi-robot systems with massive populations to perform coordinated, complex tasks," said lab director James McLurkin, assistant professor of computer science at Rice.
To demonstrate the kind of complex behaviors that can be achieved with simple commands, Becker videotaped an experiment over the Labor Day weekend in which a swarm of a dozen randomly scattered r-one robots were directed to form a complex shape -- a capital R. To direct the robots, Becker used a basic controller -- a simple one-button, '80s-era videogame joystick that was capable of giving only two commands: rotate and roll forward.
"The robots are all connected to the same joystick, so each robot received exactly the same commands," Becker said.
The experiments were the latest to use the r-one, an inexpensive yet sophisticated multi-robot system that McLurkin began designing in 2009. Each bagel-sized r-one has a radio, a motor, two wheels, dozens of sensors and onboard electronics. R-ones are up to 10 times less expensive than previously available research-grade swarm robots.
In the Labor Day experiment, Becker's control algorithm directed each r-one in the swarm to a unique, pre-programmed, end position. The algorithm did this by taking advantage of slight differences in each robot's response to the two simple commands. In a computer simulation, Becker also showed how the same technique could be used to direct a 120-robot swarm to both spell out "Rice" and display the shape of the university's owl mascot.
"The controller commands all the robots to rotate, and prior to giving the forward command, the controller measures the location and orientation of each member of the swarm with an overhead camera," Becker said. "The algorithm collapses all of that information into a single number -- a measurement of error -- and tries to make this error as small as possible."
To reduce the error measure, the controller exploits "rotational noise."
"Each time the joystick tells the robots to turn, every robot turns a slightly different amount due to random wheel slip," Becker said. "The controller uses these differences to slowly drive the swarm to its goal. This is where the algorithmic results are critical. It might take thousands of individual commands to produce a complex shape, but the proof shows that the algorithm will always produce the desired goal positions."
"It's counterintuitive," McLurkin said. "Common sense would seem to indicate that you'd need to issue individual commands to each robot to move the group into complex patterns, but that is not the case. The beauty of the algorithm is that each simple move brings the entire group closer to the goal."
He said the demonstration is the first step toward a more ambitious goal.
"Aaron's new work is aimed at using environmental obstacles to perform more complex tasks and to simultaneously control hundreds or thousands of robots," McLurkin said. "That may sound like science fiction, but Rice chemist James Tour is developing massive populations of nanorobots right now, just two buildings over. His group can build many trillions of these in a single batch."
Becker said the current algorithm is slow, and data from the online games will be used to design new control algorithms that are as much as 200 times faster.
Becker, who will wrap up a yearlong postdoctoral stint at MRSL later this month, will continue his research at his next postdoctoral assignment at Harvard University and Boston Children's Hospital.
MRSL research is supported by the National Science Foundation.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||