Home > Press > Almost as sensitive as a dog's nose: New sensor for SERS Raman spectroscopy
The basis of the high-sensitivity sensor are carbon nanotubes having curved tips. The numerous gaps let through the Raman scattered light. Illustration: H.G. Park / ETH Zurich |
Abstract:
Scientists at ETH Zurich and the Lawrence Livermore National Laboratory (LLNL) in California have developed an innovative sensor for surface-enhanced Raman spectroscopy (SERS). Thanks to its unique surface properties at nanoscale, the method can be used to perform analyses that are more reliable, sensitive and cost-effective. In experiments with the new sensor, the researchers were able to detect a certain organic species (1,2bis(4-pyridyl)ethylene, or BPE) in a concentration of a few hundred femtomoles per litre. A 100 femtomolar solution contains around 60 million molecules per litre.
Until now, the detection limit of common SERS systems was in the nanomolar range, i.e. one billionth of a mole. The results of a study conducted by Hyung Gyu Park, Professor of Energy Technology at ETH Zurich, and Tiziana Bond, Capability Leader at LLNL, were published this week as a cover article in the scientific journal Advanced Materials.
Raman spectroscopy takes advantage of the fact that molecules illuminated by fixed-frequency light exhibit 'inelastic' scattering closely related to the vibrational and rotational modes excited in the molecules. Raman scattered light differs from common Rayleigh scattered light in that it has different frequencies than that of the irradiating light and produces a specific frequency pattern for each substance examined, making it possible to use this spectrum information as a fingerprint for detecting and identifying specific substances. To analyse individual molecules, the frequency signals must be amplified, which requires that the molecule in question either be present in a high concentration or located close to a metallic surface that amplifies the signal. Hence the name of the method: surface-enhanced Raman spectroscopy.
Amplified signals for improved reproducibility
"This technology has been around for decades," explains Ali Altun, a doctoral student in the group led by Park at the Institute of Energy Technology. With today's SERS sensors, however, the signal strength is adequate only in isolated cases and yields results with low reproducibility. Altun, Bond and Park therefore set themselves the goal of developing a sensor that massively amplifies the signals of the Raman-scattered light.
The substrate of choice turned out to be vertically arranged, caespitose, densely packed carbon nanotubes (CNT) that guarantee this high density of 'hot spots'. The group developed techniques to grow dense forests of CNTs in a uniform and controlled manner. The availability of this expertise was one of the principal motivations for using nanotubes as the basis for highly sensitive SERS sensors, says Park.
A spaghetti-like surface
The tips of the CNTs are sharply curved, and the researchers coated these tips with gold and hafnium dioxide, a dielectric insulating material. The point of contact between the surface of the sensor and the sample thus resembles a plate of spaghetti topped with sauce. However, between the strands of spaghetti, there are numerous randomly arranged holes that let through scattered light, and the many points of contact -- the 'hot spots' -- amplify the signals.
"One method of making highly sensitive SERS sensors is to take advantage of the contact points of metal nanowires," explains Park. The nano-spaghetti structure with metal-coated CNT tips is perfect for maximising the density of these contact points.
Indeed, Bond explains, the wide distribution of metallic nano-crevices in the nanometre range, well recognised to be responsible for extreme electromagnetic enhancement (or hot spots) and highly pursued by many research groups, has been easily and readily achieved by the team, resulting in the intense and reproducible enhancements.
The sensor differs from other comparable ultra-sensitive SERS sensors not only in terms of its structure, but also because of its relatively inexpensive and simple production process and the very large surface area of the 3D structures producing an intense, uniform signal.
A breakthrough on two levels
Initially, the researchers only coated the tips of the CNTs with gold. The first experiments with the BPE test molecule showed them that they were on the right track, but that the detection limit could not be reduced to quite the degree they had hoped. Eventually, they discovered that the electrons required on the gold layer surface for generating what is referred to as plasmon resonance were flowing out via the conductive carbon nanotubes. The task was then to figure out how to prevent this plasmonic energy leakage.
The researchers coated the CNTs with hafnium oxide, an insulating material, before applying a layer of gold. "This was the breakthrough," says Altun. The insulation layer increased the sensitivity of its sensor substrate by a factor of 100,000 in the molar concentration unit.
"For us as scientists, this was a moment of triumph," agrees Park, "and it showed us that we had made the right hypothesis and a rational design."
The key to the successful development of the sensor was therefore twofold: on the one hand, it was their decision to continue using CNTs, whose morphology is essential for maximising the number of 'hot spots', and on the other hand, it was the fact that these nanotubes were double-coated.
Park and Bond would now like to go one step further and bring their new principle to market, but they are still seeking an industry partner. Next, they want to continue improving the sensitivity of the sensor, and they are also looking for potential areas of application. Park envisions installation of the technology in portable devices, for example to facilitate on-site analysis of chemical impurities such as environmental pollutants or pharmaceutical residues in water. He stresses that invention of a new device is not necessary; it is simple to install the sensor in a suitable way.
Other potential applications include forensic investigations or military applications for early detection of chemical or biological weapons, biomedical application for real-time point-of-care monitoring of physiological levels, and fast screening of drugs and toxins in the area of law enforcement.
####
For more information, please click here
Contacts:
Hyung Gyu Park
41-446-329-460
Copyright © ETH Zurich
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||