Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Control scheme dynamically maintains unstable quantum system: Quantum inverted pendulum

Georgia Tech professor Michael Chapman poses with laser equipment in his laboratory. Georgia Tech researchers have demonstrated a way to maintain an unstable quantum system by applying bursts of microwave radiation.

Credit: Georgia Tech Photo: John Toon
Georgia Tech professor Michael Chapman poses with laser equipment in his laboratory. Georgia Tech researchers have demonstrated a way to maintain an unstable quantum system by applying bursts of microwave radiation.

Credit: Georgia Tech Photo: John Toon

Abstract:
A simple pendulum has two equilibrium points: hanging in the "down" position and perfectly inverted in the "up" position. While the "down" position is a stable equilibrium, the inverted position is definitely not stable. Any infinitesimal deviation from perfectly inverted is enough to cause the pendulum to eventually swing down.

Control scheme dynamically maintains unstable quantum system: Quantum inverted pendulum

Atlanta, GA | Posted on August 28th, 2013

It has been known for more than 100 years, though, that an inverted pendulum can be stabilized by vibrating the pivot point. This non-intuitive phenomenon is known as dynamic stabilization, and it has led to a broad range of applications including charged particle traps, mass spectrometers and high-energy particle accelerators.

Many-body quantum systems can also be placed into unstable non-equilibrium states, and like the inverted pendulum of classical physics, they typically evolve away from these states. Now, researchers at the Georgia Institute of Technology have demonstrated a way to maintain an unstable quantum system by applying bursts of microwave radiation - a quantum analog to vibrating the inverted pendulum.

In an experiment that could have implications for quantum computers and quantum simulators, the researchers used microwave pulses of varying amplitudes and frequencies to control a quantum system composed of a cloud of approximately 40,000 rubidium atoms cooled nearly to absolute zero.

The research, sponsored by the National Science Foundation and reported online August 27 by the journal Physical Review Letters, experimentally demonstrated dynamical stabilization of a non-equilibrium many-body quantum system. The paper is scheduled to appear in the journal's August 30 print issue.

"In this work, we have demonstrated that we can control the quantum dynamics of a cloud of atoms to maintain them in a non-equilibrium configuration analogous to the inverted pendulum," said Michael Chapman, a professor in the Georgia Tech School of Physics. "What we actually control is the internal spins of the atoms that give each atom a small magnetic moment. The spins are oriented in an external magnetic field against their will such that they would prefer to flip their orientation to the equilibrium position."

Mathematically, the state of the rubidium atoms is virtually identical to that of the simple mechanical pendulum, meaning that Chapman and his students have controlled what could be called a "quantum inverted pendulum."

In their experiment, the researchers began with a spin-1 atomic Bose-Einstein condensate (BEC) that is initialized in an unstable, fixed point of the spin-nematic phase space - comparable to an inverted pendulum. If allowed to freely evolve, interactions between the atoms would give rise to squeezing, quantum spin mixing and eventually relaxation to a stable state - comparable to a pendulum hanging straight down from a pivot point.

By periodically applying bursts of microwave radiation, the researchers rotated the spin-nematic many-body fluctuations, halting the squeezing and the relaxation toward stability. The researchers investigated a range of pulse periods and phase shifts to map a stability diagram that compares well with what they expected theoretically.

"The net effect is that the many-body system basically returns to the original state," said Chapman. "We reverse the squeezing of the condensate, and after it again evolves toward squeezing, we cause it to return. If we do this periodically, we can maintain the Bose-Einstein condensate in this unstable point indefinitely."

The control technique differs from active feedback, which measures the direction in which a system is moving and applies a force counter to that direction. The open-loop technique used by Chapman's group applies a constant input that doesn't vary with the activity of the system being controlled.

"We are periodically kicking the system to keep it in a state where it doesn't want to be," he said. "This is the first time we have been able to make a many-body spin system that we can stabilize against its natural evolution."

Controlling and manipulating single-particle quantum systems or simple collections of atoms, electrons and photons has been a focus of the physics community over recent decades. These capabilities have formed the foundation for technologies such as lasers, magnetic resonance imaging, atomic clocks and new atomic sensors for magnetic fields and inertial guidance.

Now, researchers are studying more complex systems that involve many additional interacting particles, perhaps thousands of them. Chapman and his group hope to help extend their knowledge of these more complex many-body systems, which could lead to developments in quantum computing, quantum simulations and improved measurements.

"The long-range goal of our work is to further the understanding of quantum mechanics and to develop new technologies that exploit the often counterintuitive realities of the quantum world," Chapman said. "Quantum many-body systems are being actively explored, and one of the things you'd like to do is be able to control them. I think this is one of the cleanest examples of being able to control a quantum many-body system in a manifestly unstable configuration."

In addition to Chapman, other co-authors of the paper include T.M. Hoang, C.S. Gerving, B.J. Land, M. Anquez and C.D. Hamley.

This research is supported by the National Science Foundation (NSF) under Award PHY-1208828. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the NSF.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project