Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists create tiny bendy power supply for even smaller portable electronics

Abstract:
Scientists have created a powerful micro-supercapacitor, just nanometres thick, that could help electronics companies develop mobile phones and cameras that are smaller, lighter and thinner than ever before. The tiny power supply measures less than half a centimetre across and is made from a flexible material, opening up the possibility for wearable electronics.

Scientists create tiny bendy power supply for even smaller portable electronics

London, UK | Posted on August 7th, 2013

The research is published in the Royal Society of Chemistry journal Energy & Environmental Science.

A bottleneck in making portable electronic devices like mobile phones even smaller is reducing the size and increasing the flexibility of the power supplies in electronic circuits. Supercapacitors are attractive power supplies because they can store almost as much energy as a battery, with the advantage of high-speed energy discharge. Supercapacitor electrodes are normally made from carbon or conducting polymers, but these can be relatively costly.

A team led by Professor Oliver G Schmidt at the Leibniz Institute for Solid State and Materials Research in Dresden (IFW-Dresden) examined the use of manganese dioxide as an alternative electrode material, which is more environmentally friendly and less expensive than the standard materials. Manganese dioxide is not a natural choice for an electrode material because it isn't very electrically conductive, nor is it naturally flexible or strong. However, the scientists overcame this by vaporising the manganese dioxide using an electron beam and then allowing the gaseous atoms to precipitate into thin, bendy films. They incorporated very thin layers of gold into the films to improve the electrical conductivity of the material.

Tests on the new micro-supercapacitor showed that the tiny, bendy power supply can store more energy and provide more power per unit volume than state-of-the-art supercapacitors.

Dr Chenglin Yan, leader of the research group at IFW-Dresden, said: "Supercapacitors, as a new class of energy device, can store high energy and provide high power, bridging the gap between rechargeable batteries and conventional capacitors. So we thought a micro-supercapacitor would be an important development in the rapid advance of portable consumer electronics, which need small lightweight, flexible micro-scale power sources.

"The device could be applied to many miniaturised technologies, including implantable medical devices and active radio frequency identification (RFID) tags for self-powered miniaturised devices."

The next step in the team's research is finding a cheaper alternative to gold to improve the conductivity of the micro-supercapacitor.

Dr Yan said: "The major challenge we had to overcome in developing this technology was to obtain really high energy density on the micro-scale, at a low cost. The inclusion of gold in our micro-supercapacitor makes it more expensive, so we are now looking at replacing gold with cheaper metals, such as manganese, to make the device more practical for the market."

####

About Royal Society of Chemistry
The Royal Society of Chemistry is the leading society and professional body for chemical scientists. Supported by a network of over 48,000 members worldwide and an internationally acclaimed publishing business, our activities span education and training, conferences and science policy, and the promotion of the chemical sciences to the public. Our headquarters are in London and Cambridge, with international offices in the USA, China, Japan, India and Brazil.

For more information, please click here

Contacts:
Victoria Steven

44-020-744-03322
07774328390

Copyright © Royal Society of Chemistry

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article 'On chip, all sold-state and flexible microsupercapacitors with high performance based on MnOx/Au multilayers' can be downloaded here:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project