Home > Press > Guided Growth of Nanowires Leads to Self-Integrated Circuits
SEM image of a logic circuit based on 14 nanowires |
Abstract:
Researchers working with tiny components in nanoelectronics face a challenge similar to that of parents of small children: teaching them to manage on their own. The nano-components are so small that arranging them with external tools is impossible. The only solution is to create conditions in which they can be "trusted" to assemble themselves.
Much effort has gone into facilitating the self-assembly of semiconductor nanowires, the basic building blocks of electronics, but until recently, success has been limited. Scientists had developed methods for growing nanowires vertically on a surface, but the resultant structures were short and disorganized. After growing, such nanowires need to be "harvested" and aligned horizontally; since such placement is random, scientists need to determine their location and only then integrate them into electric circuits.
A team led by Prof. Ernesto Joselevich of the Weizmann Institute's Materials and Interfaces Department has managed to overcome these limitations. For the first time, the scientists have created self-integrating nanowires whose position, length and direction can be fully controlled.
The achievement, reported today in the Proceedings of the National Academy of Science (PNAS), USA, was based on a method developed by Joselevich two years ago for growing nanowires horizontally in an orderly manner. In the present study - conducted by Joselevich with Dr. Mark Schvartzman and David Tsivion of his lab, and Olga Raslin and Dr. Diana Mahalu of the Physics of Condensed Matter Department - the scientists went further, creating self-integrated electronic circuits from the nanowires.
First, the scientists prepared a surface with tiny, atom-sized grooves and then added to the middle of the grooves catalyst particles that served as nuclei for the growth of nanowires. This setup defined the position, length and direction of the nanowires. They then succeeded in creating a transistor from each nanowire on the surface, producing hundreds of such transistors simultaneously. The nanowires were also used to create a more complex electronic component - a functioning logic circuit called an Address Decoder, an essential constituent of computers. These ideas and findings have earned Joselevich a prestigious European Research Council Advanced Grant.
"Our method makes it possible, for the first time, to determine the arrangement of the nanowires in advance to suit the desired electronic circuit," Joselevich explains. The ability to efficiently produce circuits from self-integrating semiconductors opens the door to a variety of technological applications, including the development of improved LED devices, lasers and solar cells.
Prof. Ernesto Joselevich's research is supported by the Carolito Stiftung and the European Research Council.
####
About Weizmann Institute
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
For more information, please click here
Copyright © Weizmann Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||