Home > Press > Off-grid sterilization with Rice U.'s 'solar steam': Solar-powered sterilization technology supported by Gates Foundation
Rice University graduate student Oara Neumann, left, and scientist Naomi Halas are co-authors of a new study about a highly efficient method of turning sunlight into heat. They expect their technology to have an initial impact as an ultra-small-scale system to treat human waste in developing nations without sewer systems or electricity. Credit: Jeff Fitlow/Rice University |
Abstract:
Rice University nanotechnology researchers have unveiled a solar-powered sterilization system that could be a boon for more than 2.5 billion people who lack adequate sanitation. The "solar steam" sterilization system uses nanomaterials to convert as much as 80 percent of the energy in sunlight into germ-killing heat.
Solar steam used to clean human waste in the developing world
The technology is described online in a July 8 paper in the Proceedings of the National Academy of Sciences Early Edition. In the paper, researchers from Rice's Laboratory for Nanophotonics (LANP) show two ways that solar steam can be used for sterilization -- one setup to clean medical instruments and another to sanitize human waste.
"Sanitation and sterilization are enormous obstacles without reliable electricity," said Rice photonics pioneer Naomi Halas, the director of LANP and lead researcher on the project, with senior co-author and Rice professor Peter Nordlander. "Solar steam's efficiency at converting sunlight directly into steam opens up new possibilities for off-grid sterilization that simply aren't available today."
In a previous study last year, Halas and colleagues showed that "solar steam" was so effective at direct conversion of solar energy into heat that it could even produce steam from ice water.
"It makes steam directly from sunlight," she said. "That means the steam forms immediately, even before the water boils."
Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering, professor of physics, professor of chemistry and professor of biomedical engineering, is one of the world's most-cited chemists. Her lab specializes in creating and studying light-activated particles. One of her creations, gold nanoshells, is the subject of several clinical trials for cancer treatment.
Solar steam's efficiency comes from light-harvesting nanoparticles that were created at LANP by Rice graduate student Oara Neumann, the lead author on the PNAS study. Neumann created a version of nanoshells that converts a broad spectrum of sunlight -- including both visible and invisible bandwidths -- directly into heat. When submerged in water and exposed to sunlight, the particles heat up so quickly they instantly vaporize water and create steam. The technology has an overall energy efficiency of 24 percent. Photovoltaic solar panels, by comparison, typically have an overall energy efficiency of around 15 percent.
When used in the autoclaves in the tests, the heat and pressure created by the steam were sufficient to kill not just living microbes but also spores and viruses. The solar steam autoclave was designed by Rice undergraduates at Rice's Oshman Engineering Design Kitchen and refined by Neumann and colleagues at LANP. In the PNAS study, standard tests for sterilization showed the solar steam autoclave could kill even the most heat-resistant microbes.
"The process is very efficient," Neumann said. "For the Bill & Melinda Gates Foundation program that is sponsoring us, we needed to create a system that could handle the waste of a family of four with just two treatments per week, and the autoclave setup we reported in this paper can do that."
Halas said her team hopes to work with waste-treatment pioneer Sanivation to conduct the first field tests of the solar steam waste sterilizer at three sites in Kenya.
"Sanitation technology isn't glamorous, but it's a matter of life and death for 2.5 billion people," Halas said. "For this to really work, you need a technology that can be completely off-grid, that's not that large, that functions relatively quickly, is easy to handle and doesn't have dangerous components. Our Solar Steam system has all of that, and it's the only technology we've seen that can completely sterilize waste. I can't wait to see how it performs in the field."
Paper co-authors include Curtis Feronti, Albert Neumann, Anjie Dong, Kevin Schell, Benjamin Lu, Eric Kim, Mary Quinn, Shea Thompson, Nathaniel Grady, Maria Oden and Nordlander, all of Rice. The research was supported by a Grand Challenges grant from the Bill & Melinda Gates Foundation and by the Welch Foundation.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
A copy of the PNAS paper is available at:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||