Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers strike gold with nanotech vaccine

Abstract:
Scientists in the US have developed a novel vaccination method that uses tiny gold particles to mimic a virus and carry specific proteins to the body's specialist immune cells.

Researchers strike gold with nanotech vaccine

London, UK | Posted on June 27th, 2013

The technique differs from the traditional approach of using dead or inactive viruses as a vaccine and was demonstrated in the lab using a specific protein that sits on the surface of the respiratory syncytial virus (RSV).

The results have been published today, 26 June, in IOP Publishing's journal Nanotechnology by a team of researchers from Vanderbilt University.

RSV is the leading viral cause of lower respiration tract infections, causing several hundred thousand deaths and an estimated 65 million infections a year, mainly in children and the elderly.

The detrimental effects of RSV come, in part, from a specific protein, called the F protein, which coats the surface of the virus. The protein enables the virus to enter into the cytoplasm of cells and also causes cells to stick together, making the virus harder to eliminate.

The body's natural defence to RSV is therefore directed at the F protein; however, up until now, researchers have had difficulty creating a vaccine that delivers the F protein to the specialised immune cells in the body. If successful, the F protein could trigger an immune response which the body could ‘remember' if a subject became infected with the real virus.

In this study the researchers created exceptionally small gold nanorods, just 21 nanometres wide and 57 nanometres long, which were almost exactly the same shape and size as the virus itself. The gold nanorods were successfully coated with the RSV F proteins and were bonded strongly thanks to the unique physical and chemical properties of the nanorods themselves.

The researchers then tested the ability of the gold nanorods to deliver the F protein to specific immune cells, known as dendritic cells, which were taken from adult blood samples.

Dendritic cells function as processing cells in the immune system, taking the important information from a virus, such as the F protein, and presenting it to cells that can perform an action against them―the T cells are just one example of a cell that can take action.

Once the F protein-coated nanorods were added to a sample of dendritic cells, the researchers analysed the proliferation of T cells as a proxy for an immune response. They found that the protein-coated nanorods caused the T cells to proliferate significantly more compared to non-coated nanorods and just the F protein alone.

Not only did this prove that the coated-nanorods were capable of mimicking the virus and stimulating an immune response, it also showed that they were not toxic to human cells, offering significant safety advantages and increasing their potential as a real-life human vaccine.

Lead author of the study, Professor James Crowe, said: "A vaccine for RSV, which is the major cause of viral pneumonia in children, is sorely needed. This study shows that we have developed methods for putting RSV F protein into exceptionally small particles and presenting it to immune cells in a format that physically mimics the virus. Furthermore, the particles themselves are not infectious."

Due to the versatility of the gold nanorods, Professor Crowe believes that their potential use is not limited to RSV.

"This platform could be used to develop experimental vaccines for virtually any virus, and in fact other larger microbes such as bacteria and fungi.

"The studies we performed showed that the candidate vaccines stimulated human immune cells when they were interacted in the lab. The next steps to testing would be to test whether or not the vaccines work in vivo" Professor Crowe continued.

####

About Institute of Physics (IOP)
The Institute of Physics is a leading international professional body and learned society with over 36,000 members, which promotes the advancement and dissemination of a knowledge of and education in the science of physics, pure and applied.

About IOP Publishing

IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to ioppublishing.org.

For more information, please click here

Contacts:
Michael Bishop
+44 (0) 1179 301032

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationThe published version of the paper "Gold nanorod vaccine for respiratory syncytial virus" (J W Stone et al 2013 Nanotechnology 24 295102) will be freely available online from 26 June 2013:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project