Home > Press > Production of Bioactive Material for Quick Treatment of Bone Damages
Abstract:
A bioactive and biocompatible material was designed and produced by engineers from Iran Polymer and Petrochemistry Research Center by using nanoparticles with the ability to quickly treat damaged bones.
In addition to having the advantages of other bioactive materials, this material is able to speed up the proliferation and differentiation of bone cells.
Although it has been proved that hydroxyapatite particles increase in-vitro cellular proliferation and differentiation, not many studies have so far been carried out on the effect of hydroxyapatite nanoparticles stabilized on the polymeric bed of poly hydroxy alkanoate on cellular responds. It is obvious that the determination of the effect of hydroxyapatite nanoparticles on the cellular behavior of poly hydroxy alkanoate polymeric bed is the first and the most important step in order to develop the applications of such nanocomposites.
Mehdi Sadat Shojayee, one of the researchers, elaborated on the purpose of the study. "In the present study, the objective was to synthesize a bioactive and biocompatible material that is able to speed up the proliferation and differentiation of bone cells in addition to having the advantages of other bioactive materials. Therefore, they can treat bone damages more quickly."
Significant modification in biological properties of poly hydroxy alkanoate/ hydroxyapatite nanocomposites in comparison with that of the pure polymer may be one of the most important results of the research. Taking into consideration the fact that the synthesized nanocomposites have increased bioactivity and they trigger the proliferation of bone cells and the differentiation of pre-bone cells to mature bone cells at the same time, the application of these nanocomposites can increase significantly the treatment of bone in comparison with the traditional samples.
Results of the research have been published in Materials Science and Engineering C, vol. 33, issue 5, 1 July 2013. For more information about the details of the research, study the full article on pages 2776-2787 on the same journal.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |