Home > Press > Which qubit my dear? New method to distinguish between neighbouring quantum bits
![]() |
This is Professor Michelle Simmons, director of the Australian Centre of Excellence for Quantum Computation and Communication Technology.
Credit: UNSW |
Abstract:
Researchers at the University of New South Wales have proposed a new way to distinguish between quantum bits that are placed only a few nanometres apart in a silicon chip, taking them a step closer to the construction of a large-scale quantum computer.
Quantum bits, or qubits, are the basic building blocks of quantum computers - ultra-powerful devices that will offer enormous advantages for solving complex problems.
Professor Michelle Simmons, leader of the research team, said a qubit based on the spin of an individual electron bound to a phosphorus atom within a silicon chip is one of the most promising systems for building a practical quantum computer, due to silicon's widespread use in the microelectronics industry.
"However, to be able to couple electron-spins on single atom qubits, the qubits need to be placed with atomic precision, within just a few tens of nanometres of each other," she says.
"This poses a technical problem in how to make them, and an operational problem in how to control them independently when they are so close together."
The UNSW team, in collaboration with theorists at Sandia National Laboratories in New Mexico, has found a solution to both these problems. Their study is published in the journal Nature Communications.
In a significant feat of atomic engineering, they were able to read-out the spins of individual electrons on a cluster of phosphorus atoms that had been placed precisely in silicon. They also propose a new method for distinguishing between neighbouring qubits that are only a few nanometres apart.
"It is a daunting challenge to rotate the spin of each qubit individually," says Holger Büch, lead author of the new study.
"If each electron spin-qubit is hosted by a single phosphorus atom, every time you try to rotate one qubit, all the neighbouring qubits will rotate at the same time - and quantum computation will not work. "
"But if each electron is hosted by a different number of phosphorus atoms, then the qubits will respond to different electromagnetic fields - and each qubit can be distinguished from the others around it," he says.
The UNSW team is part of the Australian Centre of Excellence for Quantum Computation and Communication Technology, a world-leading research centre headquartered in Sydney, Australia.
"This is an elegant and satisfying piece of work," says Professor Simmons, centre director and Mr Büch's PhD supervisor. "This first demonstration that we can maintain long spin lifetimes of electrons on multi-donor systems is very powerful. It offers a new method for addressing individual qubits, putting us one step closer to realising a practical, large-scale quantum computer."
To make the tiny device, the researchers deposited a layer of hydrogen on a silicon wafer and used a scanning tunnelling microscope to create a pattern on the surface in an ultra-high vacuum.
This was then exposed to phosphine gas and annealed at 350 degrees so phosphorus atoms became incorporated precisely into the silicon. The device was then buried in another layer of silicon.
In a quantum computer information is stored in the spin, or magnetic orientation, of an electron. This spin can not only be in two states - up and down - just as in a classical computer.
It can also be in a combination of both states at the same time, allowing exponentially larger amounts of information to be stored and processed in parallel.
####
For more information, please click here
Contacts:
Professor Michelle Simmons:
+ 61 (2) 9385 6313
UNSW Science media:
Deborah Smith
61-293-857-307
Copyright © University of New South Wales
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Quantum Computing
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |