Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Monell-led research identifies scent of melanoma: New research may lead to early non-invasive detection and diagnosis

Abstract:
According to new research from the Monell Center and collaborating institutions, odors from human skin cells can be used to identify melanoma, the deadliest form of skin cancer. In addition to detecting a unique odor signature associated with melanoma cells, the researchers also demonstrated that a nanotechnology-based sensor could reliably differentiate melanoma cells from normal skin cells. The findings suggest that non-invasive odor analysis may be a valuable technique in the detection and early diagnosis of human melanoma.

Monell-led research identifies scent of melanoma: New research may lead to early non-invasive detection and diagnosis

Philadelphia, PA | Posted on June 14th, 2013

Melanoma is a tumor affecting melanocytes, skin cells that produce the dark pigment that gives skin its color. The disease is responsible for approximately 75 percent of skin cancer deaths, with chances of survival directly related to how early the cancer is detected. Current detection methods most commonly rely on visual inspection of the skin, which is highly dependent on individual self-examination and clinical skill.

The current study took advantage of the fact that human skin produces numerous airborne chemical molecules known as volatile organic compounds, or VOCs, many of which are odorous. "There is a potential wealth of information waiting to be extracted from examination of VOCs associated with various diseases, including cancers, genetic disorders, and viral or bacterial infections," notes George Preti, PhD, an organic chemist at Monell who is one of the paper's senior authors.

In the study, published online ahead of print in the Journal of Chromatography B, researchers used sophisticated sampling and analytical techniques to identify VOCs from melanoma cells at three stages of the disease as well as from normal melanocytes. All the cells were grown in culture.

The researchers used an absorbent device to collect chemical compounds from air in closed containers containing the various types of cells. Then, gas chromatography-mass spectrometry techniques were used to analyze the compounds and identified different profiles of VOCs emitting from melanoma cells relative to normal cells.

Both the types and concentrations of chemicals were affected. Melanoma cells produced certain compounds not detected in VOCs from normal melanocytes and also more or less of other chemicals. Further, the different types of melanoma cells could be distinguished from one another.

Noting that translation of these results into the clinical diagnostic realm would require a reliable and portable sensor device, the researchers went on to examine VOCs from normal melanocytes and melanoma cells using a previously described nano-sensor.

Constructed of nano-sized carbon tubes coated with strands of DNA, the tiny sensors can be bioengineered to recognize a wide variety of targets, including specific odor molecules. The nano-sensor was able to distinguish differences in VOCs from normal and several different types of melanoma cells.

"We are excited to see that the DNA-carbon nanotube vapor sensor concept has potential for use as a diagnostic. Our plan is to move forward with research into skin cancer and other diseases," said A.T. Charlie Johnson, PhD, Professor of Physics at the University of Pennsylvania, who led the development of the olfactory sensor.

Together, the findings provide proof-of-concept regarding the potential of the two analytical techniques to identify and detect biomarkers that distinguish normal melanocytes from different melanoma cell types.

"This study demonstrates the usefulness of examining VOCs from diseases for rapid and noninvasive diagnostic purposes," said Preti. "The methodology should also allow us to differentiate stages of the disease process."

Current studies are focusing on analysis of VOCs from tumor sites of patients diagnosed with primary melanoma.

Also contributing to the research were lead author Jae Kwak, Michelle Gallagher, Mehmet Hakan Ozdener, Charles J. Wysocki, Adam Faranda, and Amaka Isamah, all from Monell; A. T. Charlie Johnson, Brett R. Goldsmith, and Steven S. Fakharzadeh from the University of Pennsylvania; and Meenhard Herlyn from The Wistar Institute. Research reported in the publication was supported by The National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under Award Number T 32 DC00014-26 to Monell. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funds were donated to the Monell Center by Ms. Bonnie Hunt in memory of her parents, Ida and Percy Hunt. Support for Drs Johnson and Goldsmith came from the University of Pennsylvania Nano/Bio Interface Center through National Science Foundation grant NSEC DMR08-32802.

####

About Monell Chemical Senses Center
The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

For more information, please click here

Contacts:
Leslie Stein

267-519-4707

Copyright © Monell Chemical Senses Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project