Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New centre to focus on harvest and storage of solar energy

Abstract:

Sustainable Chemistry

Imagine a car coated with a surface that can simultaneously capture and store energy from the sun's rays. It would solve one of the main problems associated with solar cells - they don't work at night or in foul weather. Paint which combines the properties of both solar cells and batteries is the ultimate goal for chemist Morten Brønsted Nielsen, who has just been promoted as a so-called "fyrtårnsprofessor" (lighthouse professor) at the University of Copenhagen's Department of Chemistry.

New centre to focus on harvest and storage of solar energy

Copenhagen, Denmark | Posted on April 9th, 2013

Large grant from the University of Copenhagen to the Department of Chemistry

Included with Mogens Brøndsted Nielsen's new post, 35 million kroner has been granted from the University to establish a research centre together with Nielsen's colleagues Kurt V. Mikkelsen and Henrik G. Kjærgaard. They plan to build molecules that can arrange themselves into either solar cells or into a type of energy storing battery.

Particularly in Denmark, where there aren't that many hours of sunlight, it would be extremely relevant to have solar panels able to store energy for when it is needed. If we could also produce panels in the form of paint, it would be possible to mount the panels in places where today it is impossible," says the newly designated lighthouse professor.

Academic breadth increases chances for success

A combination of theory, synthesis and spectroscopy, as well as design, production and testing within the same centre increases the chances for realising the ambitious research project.

The position as lighthouse professor is designed to elevate the overall level of chemistry research at the University of Copenhagen. Until now, Brønsted Nielsen has been a professor at the Department of Chemistry. Department Head Mikael Bols explains his decision by pointing to Brønsted's exemplary work as leader of the ‘Molecular Engineering Group', a research group, which has been involved in the development of new molecules for advanced materials, including artificial photosynthesis and molecular electronics.

Mogens Brønsted Nielsen is incredibly dynamic. The group he has assembled is young and talented, and he is himself superb, both as a researcher and instructor," says Bols.

Centre for prediction, production and testing

The Centre wishes to combine three areas: theory, synthesis and spectroscopy. Molecules with the right properties will be designed using quantum mechanical calculations before their subsequent production using chemical synthesis and ultimately investigated using spectroscopy.

A flexible alternative to rigid solar panels

While solar cells provide energy without any deleterious environmental consequences, they do suffer from one consistent ill. Namely, today's solar technology is silicon based. Like glass, silicon is heavy, fragile and rigid. Therefore, most solar cells are now situated in far from flattering and uniform rows of panels upon the country's rooftops.

Our plan is to develop solar cells based on organic molecules that incorporate carbon as their primary ingredient. That might not sound especially flexible, but one needn't look beyond carbon fiber mats to imagine how it can be bent and twisted," explains Mogens Brøndsted Nielsen.

####

For more information, please click here

Contacts:
Communication
University of Copenhagen
Nørregade 10, PO box 2177
1017 Copenhagen K
Contact:
News editor

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project