Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fighting listeria and other food-borne illnesses with nanobiotechnology: Researchers at Rensselaer Polytechnic Institute develop new method to kill pathogenic bacteria without antiobiotics or chemicals

Researchers at Rensselaer Polytechnic Institute have developed a new method to kill deadly pathogenic bacteria in food handling and packaging. Using nature as their inspiration, the researchers successfully attached cell lytic enzymes to food-safe silica nanoparticles, and created a coating (seen up close in this scanning electron micrograph image) with the demonstrated ability to selectively kill listeria -- a dangerous foodborne bacteria that causes an estimated 500 deaths every year in the United States.

Credit: Rensselaer/Dordick
Researchers at Rensselaer Polytechnic Institute have developed a new method to kill deadly pathogenic bacteria in food handling and packaging. Using nature as their inspiration, the researchers successfully attached cell lytic enzymes to food-safe silica nanoparticles, and created a coating (seen up close in this scanning electron micrograph image) with the demonstrated ability to selectively kill listeria -- a dangerous foodborne bacteria that causes an estimated 500 deaths every year in the United States.

Credit: Rensselaer/Dordick

Abstract:
Engineering researchers at Rensselaer Polytechnic Institute have developed a new method to kill deadly pathogenic bacteria, including listeria, in food handling and packaging. This innovation represents an alternative to the use of antibiotics or chemical decontamination in food supply systems.

Fighting listeria and other food-borne illnesses with nanobiotechnology: Researchers at Rensselaer Polytechnic Institute develop new method to kill pathogenic bacteria without antiobiotics or chemicals

Troy, NY | Posted on April 2nd, 2013

Using nature as their inspiration, the researchers successfully attached cell lytic enzymes to food-safe silica nanoparticles, and created a coating with the demonstrated ability to selectively kill listeria—a dangerous foodborne bacteria that causes an estimated 500 deaths every year in the United States. The coating kills listeria on contact, even at high concentrations, within a few minutes without affecting other bacteria. The lytic enzymes can also be attached to starch nanoparticles commonly used in food packaging.

This new method is modular, and by using different lytic enzymes, could be engineered to create surfaces that selectively target other deadly bacteria such as anthrax, said Jonathan Dordick, vice president for research and the Howard P. Isermann Professor at Rensselaer, who helped lead the study.

This research, which combined the expertise of chemical engineers and material scientists, took place in the Rensselaer Center for Biotechnology and Interdisciplinary Studies and the Rensselaer Nanoscale Science and Engineering Center for the Directed Assembly of Nanostructures. Collaborating with Dordick were Rensselaer colleagues Ravi Kane, the P.K. Lashmet Professor of Chemical and Biological Engineering, and Linda Schadler, the Russell Sage Professor and associate dean for academic affairs for the Rensselaer School of Engineering.

"In this study, we have identified a new strategy for selectively killing specific types of bacteria. Stable enzyme-based coatings or sprays could be used in food supply infrastructure—from picking equipment to packaging to preparation—to kill listeria before anyone has a chance to get sick from it," Kane said. "What's most exciting is that we can adapt this technology for all different kinds of harmful or deadly bacteria."

Results of the study are detailed in the paper "Enzyme-based Listericidal Nanocomposites," published today in the journal Scientific Reports from the Nature Publishing Group. See the paper online at: http://dx.doi.org/10.1038/srep01584

This most recent study builds upon the research team's success in 2010 of creating a coating for killing methicillin resistant Staphylococcus aureus (MRSA), the bacteria responsible for antibiotic resistant infections. While the previous coating was intended for use on surgical equipment and hospital walls, the development of a listeria-killing coating had the extra challenge of needing to be food-safe.

Dordick and the research team found their answer in lytic enzymes. Viruses that affect bacteria, called phages, inject their genetic material into healthy cells. The phage takes over a healthy cell, and in effect transforms the host cell into a little factory that creates more phages. Near the end of its life cycle, the original phage creates and releases lytic enzymes, which break down and make holes in cell walls of the infected bacteria. The manufactured phages escape through these holes and go on to infect other healthy cells.

Nature used lytic enzymes to break out of bacterial cells, Dordick said, and the researchers worked for years to exploit the same lytic enzymes to break into bacteria such as MRSA and listeria.

To stabilize the listeria-killing lytic enzymes, called Ply500, the researchers attached them to U.S. Food and Drug Administration-approved silica nanoparticles to create an ultra-thin film. The researchers also used maltose binding protein to attach Ply500 to edible starch nanoparticles commonly used in food packaging. Both Ply500 formulations were effective in killing within 24 hours all listeria at concentrations as high as 100,000 bacteria per milliliter—a significantly higher concentration than normally found in food contamination situations.

"Starch is an inexpensive, edible material often sprayed into the packaging as a powder layer on meat product. We took advantage of the natural affinity of a maltose binding protein fused to Ply500, and biologically bound Ply500 to starch as a non-antibiotic, non-chemical agent for reducing the threat of listeria to our food supply," Schadler said.

Looking forward, the research team plans to continue investigating new methods for harnessing the power of lytic enzymes to selectively kill harmful bacteria.

Along with Dordick, Kane, and Schadler, co-authors on the paper are Rensselaer postdoctoral researchers Kusum Solanki, Naveep Grover, Elena Paskaleva, and Lillian Lee, and Rensselaer graduate students Patrick Downs, and Krunal Mehta.

This research was supported with funding from Sealed Air Corporation.

####

For more information, please click here

Contacts:
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Controlling Protein Function With Nanotechnology:

Rensselaer Researchers Develop Coating That Safely Kills MRSA on Contact:

Using Carbon Nanotubes To Seek and Destroy Anthrax Toxin and Other Harmful Proteins:

Visit the Rensselaer research and discovery blog:

Follow us on Twitter:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project