Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic nano-droplet discovery presents opportunities for telecommunications

Researchers from KTH: from left, Anders Eklund, Sohrab Sani, Majid Mohseni, Johan Åkerman, Sunjae Chung and Anh Nguyen.
Researchers from KTH: from left, Anders Eklund, Sohrab Sani, Majid Mohseni, Johan Åkerman, Sunjae Chung and Anh Nguyen.

Abstract:
A Swedish research team has successfully created a magnetic soliton - a spin torque-generated nano-droplet that could lead to technological innovation in such areas as mobile telecommunications.

Magnetic nano-droplet discovery presents opportunities for telecommunications

Stockholm, Sweden | Posted on March 21st, 2013

First theorized 35 years ago, the magnetic nano-droplet was created in a modified spintronic oscillator by a team from KTH Royal Institute of Technology in Stockholm and the University of Gothenburg. The breakthrough was published in the March 15 issue of Science.

Johan Åkerman, a professor in the Department of Physics, Gothenburg University, and associated guest researcher at KTH, is presenting the findings this week at the American Physical Society's March Meeting in Baltimore. Åkerman says that as early as 2010, the team began to modify spintronic oscillators in order to prove that magnetic nano-droplets exist.

The results of the research, which has been ongoing for two years, have been patented by the research team. Majid Mohseni, a researcher at KTH who defended the team research in December 2012, says that the findings could have significant impact.

"This will open up completely new possibilities in nano-magnetism and spintronics. Magnetic nano-droplets have great potential to translate into different applications," Mohseni says.

In mobile telecommunications, magnetic nano-droplets present opportunities to replace microwave technology, such as mobile phones and wireless networks, with much smaller, less expensive and more resource-efficient components.

Solitons, or solitary waves that behave like particles and retain their shape when moving at a constant speed, have been used for long distance, high speed information transmission. Scientists have long believed that they exist in magnetic environments, but until now they had never been observed.

The droplets take up a space of about 50 to 100 nanometers on a piece of magnetic film. At their centre, magnetization points towards the opposite direction, both against the surrounding spin (a quantum physical property) and the applied magnetic field.

####

About KTH The Royal Institute of Technology
Research at KTH includes not only technology but also natural and social sciences. Our varied research profile does support both general and special expertise, particularly in today´s top-priority subject areas, such as IT and biotechnology.

For more information, please click here

Contacts:
David Callahan

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project