Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biobatteries catch breath

New air-breathing cathode for miniaturised biofuel cells, developed by a team of researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. The cathode consumes oxygen from air. Pictured above: Adrianna Złoczewska, a PhD student at the IPC PAS. Source: IPC PAS, Grzegorz Krzyżewski
New air-breathing cathode for miniaturised biofuel cells, developed by a team of researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. The cathode consumes oxygen from air. Pictured above: Adrianna Złoczewska, a PhD student at the IPC PAS.

Source: IPC PAS, Grzegorz Krzyżewski

Abstract:
An air-breathing bio-battery has been constructed by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. The core element providing the new power source with relatively high voltage and long lifetime is a carefully designed cathode taking up oxygen from air and composed of an enzyme, carbon nanotubes and silicate.

Biobatteries catch breath

Warsaw, Poland | Posted on March 7th, 2013

People are increasingly taking advantage of devices supporting various functions of our bodies. Today they include cardiac pacemakers or hearing aids; tomorrow it will be contact lenses with automatically changing focal length or computer-controlled displays generating images directly in the eye. None of these devices will work if not coupled to an efficient and long-lasting power supply source. The best solution seems to be miniaturised biofuel cells consuming substances naturally occurring in human body or in its direct surrounding.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw developed an efficient electrode for the use in construction of biofuel cells or zinc-oxygen biobatteries. After installation in a cell, the new biocathode generates a voltage, during many hours, that is higher than that obtained in existing power sources of similar design. The most interesting is that the device is air-breathing: it works at full efficiency when it can take oxygen directly from the air.

Common batteries and rechargeable batteries are unsuitable to power implants inside the human body as they use strong bases or acids. These agents can on no account get into the body. The battery housing must be therefore absolutely tight. But in line with reducing the battery size, it must be better isolated. In extreme cases, the weight of the housing of a common, miniaturised battery would be even a few dozen times greater than the weight of the battery's active components that generate electricity. And here biofuel cells offer an essential advantage: they do not require housing. To get electricity, it is enough to insert the electrodes into the body.

"One of the most popular experiments in electrochemistry is to make a battery by sticking appropriately selected electrodes into a potato. We are doing something similar, the difference is that we are focusing on biofuel cells and the improvement of the cathode. And, of course, to have the whole project working, we'd rather replace the potato with... a human being", says Dr Martin Jönsson-Niedziółka (IPC PAS).

In the experiments, Dr Jönsson-Niedziółka's group uses zinc-oxygen batteries. The principle of their operation is not new. The batteries constructed in this way had been popular before the time of alkaline power sources came. "At present, many laboratories work on glucose-oxygen biofuel cells. In the best case they generate a voltage of 0.6-0.7 V. A zinc-oxygen biobattery with our cathode is able to generate 1.75 V for many hours.", says Adrianna Złoczewska, a PhD student at the IPC PAS, whose research has been supported under the International PhD Projects Programme of the Foundation for Polish Science.

The main component of the biocathode developed at the IPC PAS is an enzyme surrounded by carbon nanotubes and encapsulated in a porous structure - a silicate matrix deposited on an oxygen permeable membrane. "Our group had been working for many years on techniques that were necessary to construct the cathode using enzymes, carbon nanotubes and silicate matrices", stresses Prof. Marcin Opałło (IPC PAS).

An electrode so constructed is installed in a wall of a small container. To have the biofuel cell working, it is enough to pour an electrolyte (here: a solution containing hydrogen ions) and insert the zinc electrode in the electrolyte. The pores in the silicate matrix enable oxygen supply from the air and H+ ions from the solution to active centres of the enzyme, where oxygen reduction takes place. Carbon nanotubes facilitate transport of electrons from the surface of the semipermeable membrane.

A cell with the new biocathode is able to supply power with a voltage of 1.6 V, for a minimum one and a half of a week. The cell efficiency decreases with time, likely because of gradual deactivation of the enzyme on the biocathode. "Here not everything is dependent on us, but on the progress in biotechnology. The lifetime of a biofuel cells with our biocathode could be significantly prolonged, if the enzyme regeneration processes are successfully developed", says Dr Jönsson-Niedziółka.

In the experiments carried out so far, a stack of four batteries connected in series successfully powered a lamp composed of two LEDs. Before, however, the biofuel cells based on the design developed at the IPC PAS get popularised, the researchers must solve the problem of relatively low electric power that is common to all types of biofuel cells.

The research presented here is important not only in view of the miniaturisation of power supply sources for medical implants, biosensors or light-emitting tattoos. The processes responsible for electricity generation in biofuel cells are potentially suitable for use in electric power generation in a larger scale. The limiting factors here are the properties of the enzymes, so that further advancement in this area is essentially dependent on the development of the biotechnology.

####

About Institute of Physical Chemistry of the Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences (http://www.ichf.edu.pl/) was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

For more information, please click here

Contacts:
Prof. Marcin Opałło
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433375


Dr Martin Jönsson-Niedziółka
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433306

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project