Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Samsung backs UPC-led project to develop graphene-based micro-antennas

Abstract:
Anticipated applications include communication between processors on a single chip and the creation of networks of wireless nanosensors. This is one of the innovations that the UPC will be showcasing at the GSMA Mobile World Congress 2013, the world's most important mobile technology event, to be held from 25 to 28 February at the Fira Gran Via fairgrounds in Barcelona.

Samsung backs UPC-led project to develop graphene-based micro-antennas

Edificio Rectorat, Spain | Posted on February 23rd, 2013

Graphene-Enabled Wireless Communications—a proposal submitted by an interdepartmental team based at the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) and the Georgia Institute of Technology (Georgia Tech)—will receive US$120,000 to develop micrometre-scale graphene antennas capable of transmitting information at a high speed over very short distances. The project will be carried out in the coming months.

The Graphene-Enabled Wireless Communication project, one of the award-winning proposals under the Samsung Global Research Outreach (GRO) programme, aims to use graphene antennas to implement wireless communication over very short distances (no more than a centimetre) with high-capacity information transmission (tens or hundreds of gigabits per second). Antennas made ​​of graphene could radiate electromagnetic waves in the terahertz band and would allow for high-speed information transmission. Thanks to the unique properties of this nanomaterial, the new graphene-based antenna technology would also make it possible to manufacture antennas a thousand times smaller than those currently used.

The GRO programme—an annual call for research proposals by the Samsung Advanced Institute of Technology (Seoul, South Korea)—has provided the UPC-led project with US$120,000 in financial support.

Improving internal communication in processors

The first stage of the project, launched in October 2012, focuses on the theoretical foundations of wireless communications over short distances using graphene antennas. In particular, the group is analysing the behaviour of electromagnetic waves in the terahertz band for very short distances, and investigating how coding and modulation schemes can be adapted to achieve high transmission rates while maintaining low power consumption.

The most immediate application for high-speed communications over very short distances is in data transmission between the internal components of a single device; for example, between the processor and memory of a mobile phone or computer.

The group believes the main benefits of the project in the medium term will derive from its application for internal communication in multicore processors. Processors of this type have a number of sub-processors that share and execute tasks in parallel. The application of wireless communication in this area will make it possible to integrate thousands of sub-processors within a single processor, which is not feasible with current communication systems.

The results of the project will lead to an increase in the computational performance of these devices. This improvement would allow large amounts of data to be processed at very high speed, which would be very useful for streamlining data management at processing centres ("big data") used, for example, in systems like Facebook and Google. The project, which builds on previous results obtained with the collaboration of the University of Wuppertal in Germany, the Royal Institute of Technology (KTH) in Sweden, and Georgia Tech in the United States, is expected to yield its first results in April 2013.

The project is being carried out by the NaNoNetworking Centre in Catalonia (N3Cat), a network formed at the initiative of researchers with the UPC's departments of Electronic Engineering and Computer Architecture, together with colleagues at Georgia Tech. Other members of the network are the Department of Electrical and Computer Engineering of Ohio State University (OSU) in the United States, the Faculty of Electrical and Electronics Engineering of Koç University in Istanbul, Turkey, and the Telecommunications Software and Systems Group (TSSG), a research and innovation centre based in Ireland.

The aim of this multidisciplinary team is to investigate and develop communication systems based on nanotechnology or at the nanoscale. N3Cat is headed by Josep Solé-Pareta, a lecturer in the UPC's Department of Computer Architecture, and Ian Akyildiz of Georgia Tech. The scientific directors are Eduard Alarcón of the UPC's Department of Electronic Engineering and Albert Cabellos of the Department of Computer Architecture. Two UPC doctoral students, Sergi Abadal and Ignacio Llatser, are also involved in the project.

The UPC will be showcasing this project and its most cutting-edge innovations in the field of mobile technology at the GSMA Mobile World Congress 2013, the world's most important mobile technology event, to be held from 25 to 28 February at the Fira Gran Via fairgrounds in Barcelona. The UPC, which is the only Spanish public university slated to participate in the MWC, will have its own stand (CZ1) in the App Planet Catalan Zone (Hall 8.1), the area devoted to Catalan technology centres

Samsung Global Research Outreach (GRO) programme

The UPC project is one of two Spanish initiatives included on Samsung's list of award-winning proposals (the other was submitted by the Universitat Autònoma de Barcelona). The groups behind the winning proposals are based at such internationally renowned institutions as the Massachusetts Institute of Technology (MIT), the University of Oxford and Harvard University.

The Samsung GRO programme is an annual call for research proposals that invites submissions from universities worldwide. GRO seeks to identify innovative projects with the potential to have a significant scientific impact. Proposals must be related to one of 15 specified areas, which include biomedical engineering, ICT applications related to medicine and energy, and next generation ICs and interconnections, the area for which the UPC proposal was submitted.

Proposals are evaluated by the Samsung Advanced Institute of Technology (SAIT) based on their novelty. Samsung provides gift funding for the selected research projects, with various research groups receiving assistance to help them develop joint patents. Internationally, there are few companies that engage in this form of sponsorship; in addition to Samsung, they include Google, Intel and Cisco Systems.

This year 86 proposals were selected. Each project was given a cash award of between US$50,000 and US$100,000. Funding may be renewed for up to three years, and in each case Samsung also awards 20% of the amount of the gift to the funded institution (on top of the amount given for the project).

Leaders in graphene research

The UPC is participating in a number of projects related to graphene, a rapidly emerging field of research, especially since 2010 when Russian physicists Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics for their innovative experiments involving this nanomaterial.

Graphene is a nanomaterial composed of one-atom thick sheets of carbon. The graphene revolution was sparked by a discovery made by the winners of the Nobel Prize in Physics, who in 2004 managed to isolate the material and obtain very small samples of pure graphene. This opened the door to the study of potential technological applications of the material, which offers high mechanical strength, transparency and very high electrical conductivity.

####

About Universitat Politècnica de Catalunya (UPC)
The Universitat Politècnica de Catalunya is a public institution for research and higher education that specializes in architecture, the sciences and engineering. Our schools –many with roots reaching back centuries– make it a leading institution for basic and applied research and for the training of professionals and researchers whose goal is to work in the knowledge areas we focus on.

Our university is also an academic institution without borders: we’re open to the world and have a distinctly international outlook. As a result of our active participation in international networks of excellence —both European and Latin American— we have a close relationship with prestigious institutions and scientific and educational organizations around the world and are able to collaborate effectively with them. Our laboratories and classrooms are the scene of intense research activity and excellent teaching, and the results achieved have gained widespread recognition. This is particularly true of the UPC’s record on transferring technology and knowledge to the private sector and society in general. Thus our university is a leader when it comes to innovation, entrepreneurship, research and the technological development of the country’s industrial sector. At the same time, according to the SCImago research group, the UPC occupies top positions in its knowledge areas in the ranking of Latin American academic institutions. We’re also a leading university in terms of the number of projects assigned in strategic areas defined in the European Union’s Seventh Framework Programme. But we can’t rest on our laurels –especially not at a time when despite the difficulties we face there are also opportunities to be seized. The debate on the question of what kind of university we want for the year 2020 must contribute to further strengthening our institution.

For more information, please click here

Contacts:
Oficina de Mitjans de Comunicació OMC
+34 93 401 61 43

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanonetworking Center in Catalunya (N3Cat):

Samsung Global Research Outreach (GRO):

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project