Home > Press > UCLA researchers develop new method of powering tiny devices
Abstract:
FINDINGS:
Electromagnetic devices, from power drills to smart-phones, require an electric current to create the magnetic fields that allow them to function. But with smaller devices, efficiently delivering a current to create magnetic fields becomes more difficult.
In a discovery that could lead to big changes in storing digital information and powering motors in small hand-held devices, researchers at UCLA have developed a method for switching tiny magnetic fields on and off with an electric field — a sharp departure from the traditional approach of running a current through a wire.
The researchers, affiliated with the university's National Science Foundation-funded TANMS (Translational Applications of Nanoscale Multiferroic Systems), developed a composite that can control magneto-electric activity at a scale of about 10 nanometers, some 1,000 times smaller than a red blood cell. Previously, the instability of magnetic particles at this scale made it impossible to control their movement, much less the energy reaching them.
The team used a composite of nickel nanocrystals coupled with a single crystal of piezoelectric material — which can generate power when a small amount of force is applied to it — to control the north-south orientation of the particles as well as their tendency to spin around, which are essential aspects of activating or deactivating a magnetic field.
IMPACT:
The findings could potentially change the way electromagnetic devices are designed in the future. With further research, the team said, the discovery may allow significant miniaturization of equipment ranging from memory devices and antennas to instruments used to analyze blood. The researchers noted that while their findings represent a major scientific step, practical applications of the discovery are likely years away.
AUTHORS:
The study's lead authors are Hyungsuk K.D. Kim, a recent Ph.D. graduate from the materials science and engineering department at UCLA Engineering, and doctoral candidate Laura T. Schelhas of UCLA's chemistry and biochemistry department.
The team was led by Gregory P. Carman, a professor of mechanical and aerospace engineering at UCLA Engineering and director of TANMS, and Sarah H. Tolbert, a UCLA professor of chemistry and biochemistry. Carman and Tolbert are members of the California NanoSystems Institute at UCLA.
Additional authors include doctoral students Scott Keller and Joshua Hockel of the mechanical and aerospace engineering department at UCLA Engineering.
California NanoSystems Institute facilities were used in the research.
FUNDING:
The research was supported by the Air Force Office of Scientific Research and the National Science Foundation.
####
For more information, please click here
Contacts:
Bill Kisliuk
310-206-0540
Copyright © UCLA
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |