Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA researchers develop new method of powering tiny devices

Abstract:
FINDINGS:
Electromagnetic devices, from power drills to smart-phones, require an electric current to create the magnetic fields that allow them to function. But with smaller devices, efficiently delivering a current to create magnetic fields becomes more difficult.

In a discovery that could lead to big changes in storing digital information and powering motors in small hand-held devices, researchers at UCLA have developed a method for switching tiny magnetic fields on and off with an electric field — a sharp departure from the traditional approach of running a current through a wire.

UCLA researchers develop new method of powering tiny devices

Los Angeles, CA | Posted on February 23rd, 2013

The researchers, affiliated with the university's National Science Foundation-funded TANMS (Translational Applications of Nanoscale Multiferroic Systems), developed a composite that can control magneto-electric activity at a scale of about 10 nanometers, some 1,000 times smaller than a red blood cell. Previously, the instability of magnetic particles at this scale made it impossible to control their movement, much less the energy reaching them.

The team used a composite of nickel nanocrystals coupled with a single crystal of piezoelectric material — which can generate power when a small amount of force is applied to it — to control the north-south orientation of the particles as well as their tendency to spin around, which are essential aspects of activating or deactivating a magnetic field.

IMPACT:
The findings could potentially change the way electromagnetic devices are designed in the future. With further research, the team said, the discovery may allow significant miniaturization of equipment ranging from memory devices and antennas to instruments used to analyze blood. The researchers noted that while their findings represent a major scientific step, practical applications of the discovery are likely years away.

AUTHORS:
The study's lead authors are Hyungsuk K.D. Kim, a recent Ph.D. graduate from the materials science and engineering department at UCLA Engineering, and doctoral candidate Laura T. Schelhas of UCLA's chemistry and biochemistry department.

The team was led by Gregory P. Carman, a professor of mechanical and aerospace engineering at UCLA Engineering and director of TANMS, and Sarah H. Tolbert, a UCLA professor of chemistry and biochemistry. Carman and Tolbert are members of the California NanoSystems Institute at UCLA.

Additional authors include doctoral students Scott Keller and Joshua Hockel of the mechanical and aerospace engineering department at UCLA Engineering.

California NanoSystems Institute facilities were used in the research.

FUNDING:
The research was supported by the Air Force Office of Scientific Research and the National Science Foundation.

####

For more information, please click here

Contacts:
Bill Kisliuk

310-206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

JOURNAL:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project