Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SEMATECH and Cabot Microelectronics Collaborate to Accelerate Chemical Mechanical Planarization Technology for Future Devices

Abstract:
SEMATECH today announced that Cabot Microelectronics Corporation (Nasdaq: CCMP), the world's leading supplier of chemical mechanical planarization (CMP) polishing slurries and a growing CMP pad supplier to the semiconductor industry, has joined its Front End Processes (FEP) program and will collaborate with SEMATECH to develop advanced solutions for emerging CMP applications.

SEMATECH and Cabot Microelectronics Collaborate to Accelerate Chemical Mechanical Planarization Technology for Future Devices

Albany, NY | Posted on February 15th, 2013

"SEMATECH provides Cabot Microelectronics with excellent process capability to help identify and demonstrate emerging applications for CMP consumables," stated Ananth Naman, Cabot Microelectronics' Vice President of Research and Development. "We expect this collaboration to help enable Cabot Microelectronics support our customers' emerging CMP requirements."

As semiconductor device sizes shrink, new materials are introduced, and higher yields are targeted. Achieving wafer scale planarity through CMP has become increasingly challenging. These issues are expected to continue to become more challenging in the context of low-power technologies.

"SEMATECH is pleased to welcome Cabot Microelectronics as a program member," said Paul Kirsch, SEMATECH's director of Front End Processes. "Cabot Microelectronics' CMP processing solutions will complement our own device and process expertise. We will work together to develop practical, manufacturable solutions to address the emerging needs of advanced transistor technologies."

The goal of SEMATECH's FEP program is to enable novel leading-edge materials, processes, structural modules and electrical and physical characterization methods to support the continued scaling of logic and memory applications.

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market.

About Cabot Microelectronics Corporation

Cabot Microelectronics Corporation, headquartered in Aurora, Illinois, is the world's leading supplier of CMP polishing slurries and a growing CMP pad supplier to the semiconductor industry. The company's products play a critical role in the production of advanced semiconductor devices, enabling the manufacture of smaller, faster and more complex devices by its customers. The company's mission is to create value by developing reliable and innovative solutions, through close customer collaboration, that solve today's challenges and help enable tomorrow's technology. Since becoming an independent public company in 2000, the company has grown to approximately 1,050 employees on a global basis. For more information about Cabot Microelectronics Corporation, visit www.cabotcmp.com.

For more information, please click here

Contacts:
SEMATECH
Erica McGill
518-649-1041

Twitter: www.twitter.com/sematechnews

Cabot Microelectronics Corporation
Trisha Tuntland
Manager
Investor Relations
630-499-2600

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project