Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Just Add Water: How Scientists Are Using Silicon to Produce Hydrogen on Demand - New technology could help power portable devices like satellite phones and radios

Transmission electron microscopy image showing spherical silicon nanoparticles about 10 nanometers in diameter. These particles, created in a UB lab, react with water to quickly produce hydrogen, according to new UB research. Credit: Swihart Research Group, University at Buffalo.
Transmission electron microscopy image showing spherical silicon nanoparticles about 10 nanometers in diameter. These particles, created in a UB lab, react with water to quickly produce hydrogen, according to new UB research. Credit: Swihart Research Group, University at Buffalo.

Abstract:
Super-small particles of silicon react with water to produce hydrogen almost instantaneously, according to University at Buffalo researchers.

In a series of experiments, the scientists created spherical silicon particles about 10 nanometers in diameter. When combined with water, these particles reacted to form silicic acid (a nontoxic byproduct) and hydrogen — a potential source of energy for fuel cells.

Just Add Water: How Scientists Are Using Silicon to Produce Hydrogen on Demand - New technology could help power portable devices like satellite phones and radios

Buffalo, NY | Posted on January 22nd, 2013

The reaction didn't require any light, heat or electricity, and also created hydrogen about 150 times faster than similar reactions using silicon particles 100 nanometers wide, and 1,000 times faster than bulk silicon, according to the study.

The findings appeared online in Nano Letters on Jan. 14. The scientists were able to verify that the hydrogen they made was relatively pure by testing it successfully in a small fuel cell that powered a fan.

"When it comes to splitting water to produce hydrogen, nanosized silicon may be better than more obvious choices that people have studied for a while, such as aluminum," said researcher Mark T. Swihart, UB professor of chemical and biological engineering and director of the university's Strategic Strength in Integrated Nanostructured Systems.

"With further development, this technology could form the basis of a ‘just add water' approach to generating hydrogen on demand," said researcher Paras Prasad, executive director of UB's Institute for Lasers, Photonics and Biophotonics (ILPB) and a SUNY Distinguished Professor in UB's Departments of Chemistry, Physics, Electrical Engineering and Medicine. "The most practical application would be for portable energy sources."

Swihart and Prasad led the study, which was completed by UB scientists, some of whom have affiliations with Nanjing University in China or Korea University in South Korea. Folarin Erogbogbo, a research assistant professor in UB's ILPB and a UB PhD graduate, was first author.

The speed at which the 10-nanometer particles reacted with water surprised the researchers. In under a minute, these particles yielded more hydrogen than the 100-nanometer particles yielded in about 45 minutes. The maximum reaction rate for the 10-nanometer particles was about 150 times as fast.

Swihart said the discrepancy is due to geometry. As they react, the larger particles form nonspherical structures whose surfaces react with water less readily and less uniformly than the surfaces of the smaller, spherical particles, he said.

Though it takes significant energy and resources to produce the super-small silicon balls, the particles could help power portable devices in situations where water is available and portability is more important than low cost. Military operations and camping trips are two examples of such scenarios.

"It was previously unknown that we could generate hydrogen this rapidly from silicon, one of Earth's most abundant elements," Erogbogbo said. "Safe storage of hydrogen has been a difficult problem even though hydrogen is an excellent candidate for alternative energy, and one of the practical applications of our work would be supplying hydrogen for fuel cell power. It could be military vehicles or other portable applications that are near water."

"Perhaps instead of taking a gasoline or diesel generator and fuel tanks or large battery packs with me to the campsite (civilian or military) where water is available, I take a hydrogen fuel cell (much smaller and lighter than the generator) and some plastic cartridges of silicon nanopowder mixed with an activator," Swihart said, envisioning future applications. "Then I can power my satellite radio and telephone, GPS, laptop, lighting, etc. If I time things right, I might even be able to use excess heat generated from the reaction to warm up some water and make tea."

####

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project