Home > Press > University of Illinois-led SONIC Center awarded $30 million for computing on nanoscale fabrics
![]() |
Naresh Shanbhag |
Abstract:
Led by faculty at the University of Illinois at Urbana-Champaign, a multi-university research team has received $30 million to launch the Systems On Nanoscale Information fabriCs (SONIC) Center. The center - part of a new $194 million initiative called the Semiconductor Technology Advanced Research network (STARnet) - will focus on substantially enhancing the information processing power and storage capacity of integrated circuits (ICs) and related systems, which is critical in maintaining reliability as devices continue to shrink and improve in energy efficiency.
Society is increasingly dependent on electronic information and has come to expect electronic devices - cell phones, tablets, laptops, cameras and others - to decrease in cost, offer more features and provide longer-lasting battery power. In the past, such advances have been made possible by the frequent reduction in size of a basic building block - the transistor switch.
Today, these switches are so small that their behavior is fraught with uncertainty due to quantum effects. The challenge is to design reliable and energy-efficient computing systems using the unreliable switches that arise as researchers seek to make devices even smaller and more energy-efficient. SONIC's innovative research agenda seeks to address this issue by treating the problem of computing using unreliable devices and circuits as one of communicating information over unreliable channels.
"Essentially, we're not going to try to build a reliable switch, but instead discover methods to build reliable systems," said SONIC Director Naresh Shanbhag, the Jack S. Kilby Professor of Electrical and Computer Engineering. "It turns out that while information resides at the highest level and nanoscale components at the lowest level, they can both be mathematically described with the same statistical framework. No one has successfully captured this similarity between them before."
The center seeks to create a new computing paradigm - using information processing instead of data processing - to extend scaling of nanoscale devices beyond what is feasible today. Computing devices today are primarily data pipes and data crunchers. By borrowing probabilistic techniques from the field of communications, SONIC researchers plan to transform these systems into statistical information processors that are able to infer intent and handle uncertainty while consuming much less energy than traditional computers.
SONIC is supported by STARnet, which will provide funding over the next five years to six centers at universities. Funded by the Department of Defense and U.S. semiconductor and supplier companies as a public-private partnership, STARnet projects help maintain U.S. leadership in semiconductor technology vital to U.S. prosperity, security and intelligence. The STARnet program is administered by the Semiconductor Research Corporation (SRC), the world's leading university research consortium for semiconductors and related technologies, and the Defense Advanced Projects Research Agency (DARPA), part of the Department of Defense.
"STARnet is a collaborative network of stellar university research centers whose goal is to enable the continued pace of growth of the microelectronics industry, unconstrained by the daunting list of fundamental physical limits that threaten," said Gilroy Vandentop, the new SRC program executive director.
"This is a truly multidisciplinary research effort. Here at Illinois, we have faculty investigators from the Departments of Computer Science, Electrical and Computer Engineering, and Materials Science and Engineering, " said Andrew Singer, a theme leader in SONIC and a Professor of Electrical and Computer Engineering. The Coordinated Science Laboratory at Illinois, where four SONIC researchers are faculty members, will support SONIC's administrative activities.
The SONIC team consists of 23 faculty researchers from universities across the nation, including Carnegie Mellon University; Princeton University; Stanford University; the University of California, Berkeley; the University of California, San Diego; the University of California, Santa Barbara; and the University of Michigan. Other Illinois faculty include Pavan Kumar Hanumolu, Rakesh Kumar, and Eric Pop, Electrical and Computer Engineering; John A. Rogers, Materials Science and Engineering; and Rob Rutenbar, Computer Science.
In addition to SONIC, University of Illinois researchers are also involved with two other STARnet research centers. Douglas L. Jones, a Professor of Electrical and Computer Engineering, will contribute to the TerraSwarm Research Center at the University of California, Berkeley, which aims to address pervasive integration of smart, networked sensors and actuators into our connected world. Wen-mei Hwu and Deming Chen, both Electrical and Computer Engineering faculty, will participate in the Center for Future Architectures Research (C-FAR), led by the University of Michigan. C-FAR will develop future scalable computer systems architectures that leverage emerging circuit fabrics to enable new commercial/defense applications.
####
Contacts:
Kim Gudeman
Coordinated Science Laboratory
1308 West Main Street
Urbana, IL 61801
217.333.9735
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |