Home > Press > Nanotechnology drug delivery shows promise for treatment of pediatric cancer: Childhood leukemia the focus of research
Abstract:
This month, Molecular Pharmaceutics reported promising findings from the Nemours Center for Childhood Cancer Research and the Materials Science and Engineering Department at the University of Delaware, about the potential for nanotechnology to deliver chemotherapeutic agents in a way that attacks cancer cells without harming healthy cells. To date, nanoparticle-based drug delivery approaches have been poorly developed for the treatment of childhood leukemia, which comprises 30% of childhood cancers. In the Nemours study, encapsulated dexamethasone ("dex") delivered to pre-clinical models with leukemia significantly improved quality of life and survival compared to the control receiving the unencapsulated drug.
Acute lymphoblastic leukemia (ALL) is the most common form of pediatric leukemia. Although 5-year survival rates for ALL approach 90% with available chemotherapy treatments, the deleterious side effects of the drugs, including secondary cancers and fertility, cognitive, hearing, and developmental problems, present a significant concern for survivors and their families. Dex is one of the most commonly used drugs to treat childhood leukemia and long-term systemic exposure to dex causes considerable side effects.
Studies conducted by the lead author A. K. Rajasekaran, PhD, and his team at Nemours in collaboration with Xinqiao Jia, PhD, and her team at the University of Delaware, used polymeric nanoparticles containing chemotherapeutic agents to ensure controlled delivery of drugs to cancer cells in preclinical models. "There are currently seven or eight drugs that are used for chemotherapy to treat leukemia in children," said Dr. Rajasekaran. "They are all toxic and do their job by killing rapidly dividing cells." However, he explained, these drugs don't differentiate cancer cells from other, healthy cells. "The good news is that these drugs are 80-90% effective in curing leukemia. The bad news is that many chemotherapeutic treatments cause severe side effects, especially in children." He posits that it will take researchers hundreds of millions of dollars and many years to find better alternative drug treatments. In the interim, scientists like Dr. Rajasekaran and his colleagues are working on novel ways to deliver existing and affordable drugs to children. "Our polymer synthesis and particle engineering are guided by the clinical need for reducing the side effects of cancer drugs," Dr. Jia commented. Vinu Krishnan, the first author of the study and a chemical engineer and graduate student in Materials Science and Engineering, said, "I am very excited about the results and look forward to taking this to the next level and introducing this approach for the clinical treatment of childhood leukemia". Students in Dr. Jia's group contributing to this work also include Xian Xu and Xiaowei Yang.
To date, advances in nanotechnology have been primarily concentrated around adult cancers. Nanotechnology involves the use of encapsulated particles of drugs that go into the core of the cell. The nanoparticles stick only to the cancer cells and destroy them by delivering the drug precisely, without detecting or harming the normal cells. In preclinical models of leukemia, Dr. Rajasekaran and his team were able to improve survival and quality of life via nanotechnology. Encapsulating the drug uses one third of the typical dose, with good treatment results and no discernible side effects. In addition, the mice that received the drugs delivered via nanoparticles survived longer than those that received the drug administered in the traditional way.
This work is supported by National Institutes of Health (RO1 DK56216, P20RR016458, P20 RR017716), Delaware Health Sciences Alliance, Andrew McDonough B + Foundation, Caitlin Robb Foundation, Kids Runway for Research, Sones Brothers, Nemours Foundation and funds from the University of Delaware.
####
About Nemours
The Nemours Center for Childhood Cancer Research (NCCCR) is an entity of Nemours Biomedical Research and Nemours Center for Cancer and Blood Disorders at the Alfred I. duPont Hospital for Children. The goal of the center is to evolve into a leader in research focusing on biomarkers for childhood cancers and cancers that affect families. The NCCCR works with the Christiana Care Helen F. Graham Cancer Center, the Universityof Delaware Center for Translational Research and the Delaware Biotechnology Institute. The Nemours/Alfred I. duPont Hospital for Children is a division of Nemours, which operates one of the nation's largest health systems devoted to pediatric patient care, teaching, and research. Established as The Nemours Foundation through the legacy and philanthropy of Alfred I. duPont, Nemours offers pediatric clinical care, research, education, advocacy, and prevention programs to families in the communities it serves.
For more information, please click here
Contacts:
Karen Bengston
302-298-7319
Copyright © Nemours
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||