Home > Press > Making ‘nanospinning’ practical --Nanofibers have a dizzying range of possible applications, but they’ve been prohibitively expensive to make. MIT researchers hope to change that.
Abstract:
Nanofibers — strands of material only a couple hundred nanometers in diameter — have a huge range of possible applications: scaffolds for bioengineered organs, ultrafine air and water filters, and lightweight Kevlar body armor, to name just a few. But so far, the expense of producing them has consigned them to a few high-end, niche applications.
Luis Velásquez-García, a principal research scientist at MIT's Microsystems Technology Laboratories, and his group hope to change that. At the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications in December, Velásquez-García, his student Philip Ponce de Leon, and Frances Hill, a postdoc in his group, will describe a new system for spinning nanofibers that should offer significant productivity increases while drastically reducing power consumption.
Using manufacturing techniques common in the microchip industry, the MTL researchers built a one-square-centimeter array of conical tips, which they immersed in a fluid containing a dissolved plastic. They then applied a voltage to the array, producing an electrostatic field that is strongest at the tips of the cones. In a technique known as electrospinning, the cones eject the dissolved plastic as a stream that solidifies into a fiber only 220 nanometers across.
In their experiments, the researchers used a five-by-five array of cones, which already yields a sevenfold increase in productivity per square centimeter over even the best existing methods. But, Velásquez-García says, it should be relatively simple to pack more cones onto a chip, boosting productivity even more. Indeed, he says, in prior work on a similar technique called electrospray, his lab was able to cram almost a thousand emitters into a single square centimeter. And multiple arrays could be combined in a panel to further increase yields.
Because the new paper was prepared for an energy conference, it focuses on energy applications. But nanofibers could be useful for any device that needs to maximize the ratio of surface area to volume, Velásquez-García says. Capacitors — circuit components that store electricity — are one example, because capacitance scales with surface area. The electrodes used in fuel cells are another, because the greater the electrodes' surface area, the more efficiently they catalyze the reactions that drive the cell. But almost any chemical process can benefit from increasing catalysts' surface area, and increasing the surface area of artificial-organ scaffolds gives cells more points at which to adhere.
Another promising application of nanofibers is in meshes so fine that they allow only nanoscale particles to pass through. The example in the new paper again comes from energy research: the membranes that separate the halves of a fuel cell. But similar meshes could be used to filter water. Such applications, Velásquez-García says, depend crucially on consistency in the fiber diameter, another respect in which the new technique offers advantages over its predecessors.
Existing electrospinning techniques generally rely on tiny nozzles, through which the dissolved polymer is forced. Variations in operating conditions and in the shape of the nozzles can cause large variation in the fiber diameter, and the nozzles' hydraulics mean that they can't be packed as tightly together. A few manufacturers have developed fiber-spinning devices that use electrostatic fields, but their emitters are made using much cruder processes than the chip-manufacturing techniques that the MTL researchers exploited. As a consequence, not only are the arrays of tips much less dense, but the devices consume more power.
"The electrostatic field is enhanced if the tip diameter is smaller," Velásquez-García says. "If you have tips of, say, millimeter diameter, then if you apply enough voltage, you can trigger the ionization of the liquid and spin fibers. But if you can make them sharper, then you need a lot less voltage to achieve the same result."
The use of microfabrication technologies not only allowed the MTL researchers to pack their cones more tightly and sharpen their tips, but it also gave them much more precise control of the structure of the cones' surfaces. Indeed, the sides of the cones have a nubby texture that helps the cones wick up the fluid in which the polymer is dissolved. In ongoing experiments, the researchers have also covered the cones with what Velásquez-García describes as a "wool" of carbon nanotubes, which should work better with some types of materials.
Indeed, Velásquez-García says, his group's results depend not only on the design of the emitters themselves, but on a precise balance between the structure of the cones and their textured coating, the strength of the electrostatic field, and the composition of the fluid bath in which the cones are immersed.
The MIT researchers' work was funded in part by the U.S. Defense Advanced Research Projects Agency.
Written by Larry Hardesty, MIT News Office
####
For more information, please click here
Contacts:
Caroline McCall
MIT News Office
E:
T: 617-253-1682
Copyright © MIT
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||