Home > Press > Micromotion Gets a Two-Faced Lift: Using Janus Particles for Chemical Power
![]() |
Abstract:
Janus particles, named after the Roman god with two opposing faces, are asymmetrical objects with distinct surface regions of different chemical or physical properties. The particular Janus particles created by this group from America are aluminium microspheres of between 5 and 30 μm in diameter that have been partially coated with palladium.
In pH 4-11, the particle's partial palladium coating catalyses the decomposition of any hydrogen peroxide in the surrounding solution, producing water and oxygen bubbles. The evolution of oxygen generates thrust, propelling the particles forward in the direction of their uncoated aluminium segment. One limiting factor to the application of micromotors like these, however, is that the hydrogen peroxide commonly used to fuel their motion is required in high concentrations. Handy, then, that these Janus particles can run on more than one fuel type.
Under either acidic or basic conditions, the uncoated aluminium part reacts with either hydrogen or hydroxide ions, in both cases producing hydrogen bubbles, which propels the particle in the opposite direction, toward its palladium shell. A speed of 25 μm per second was achieved by these particles under basic conditions, but a higher speed yet was reached in an acid medium of the same concentration, slightly outdoing the palladium/hydrogen peroxide propulsion speed at 36 μm per second.
The call for self-propelled nano/microscale particles is very broad, echoing across such hot fields as targeted drug delivery and environmental remediation. While the ability to autonomously switch fuels in response to changes in their environment represents both an advantage and an engineering challenge—in keeping with the two-faced nature of the particles themselves—the beautiful simplicity and extraordinary versatility of these Al/Pd particles are a major advantage. Their ability to adapt chemically for self-propulsion in different media will allow their use in completely different or changing environments without modification, giving them a very competitive edge across a variety of applications.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link to the original paper on Wiley Online Library:
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |