Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NanoSight joins the EU Methods List relating to "Nanomaterials"

Abstract:
NanoSight, providers of unique nanoparticle tracking analysis technology (NTA) welcomes the publication of the European Commission report listing methods currently available for measurement of Nanomaterials, as defined by the EU in 2011.

NanoSight joins the EU Methods List relating to "Nanomaterials"

Salisbury, UK | Posted on November 7th, 2012

This report, from the Joint Research Centre of the EU, defining the measurement of nanomaterials is entitled: Requirements on measurements for the implementation of the European Commission definition of the term "nanomaterial", Linsinger T., Roebben G., Gilliland D., Calzolai L., Rossi F., Gibson N., Klein C.(1).

The report follows publication by the European Commission of a recommendation of the term "nanomaterial" for regulatory purposes. The report describes the requirements for particle size measurement issues of nanomaterials based on that definition. It reviews the capabilities of the measurement methods currently available, amongst which is Particle Tracking Analysis (PTA).

Eight methods are discussed, three of which have the number-based methodology which is at the heart of the EU definition(2). These are electron microscopy, atomic force microscopy (AFM) and Particle Tracking Analysis.

Dr Patrick Hole, NanoSight's Head of Development, warmly welcomes the report: "This is a balanced and expert review from the team at the IRMM (Institute for Reference Materials and Measurement), providing a clear overview of the issues in particle characterization as well as the methods available. The individual methods sections address directly the match of technology to the definition issues. The onus is now on NanoSight to further address directly the requirements of the definition2 through a combination of broadening the applicability of the technology, developing protocols for specific sample types and working with other suitable techniques in order to provide the definitive characterization solutions."

The report describes PTA as having a number of important advantages including relatively low instrument cost and high sensitivity which can detect nanoparticles at concentrations as low as 106 particles/cm3. It also highlights limitations including lower size detection limit and the inability to distinguish agglomerates and aggregates from primary particles. The report highlights practical examples of the measurement issues that remain to be solved.

Jeremy Warren, NanoSight's CEO comments: "There was never going to be a universal technique or even combination of techniques that would address the myriad of different types of nanoparticles that may be subject to legislation. However, it is important that Particle Tracking Analysis is included on the list. This gives much support to our discussions with cosmetic and food industry scientists as they search for characterization methodologies to meet forthcoming regulation."

References:

1:publications.jrc.ec.europa.eu/repository/bitstream/111111111/26399/2/irmm_nanomaterials%20%28online%29.pdf

2:eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF

To find out about NanoSight and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysisinstrumentation, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 500+ third party papers citing NanoSight results. Furthermore, an ASTM (American Society for Testing and Materials) protocol ASTM E3428 was recently published introducing NTA as a method for testing nanoparticles helps to consolidate NanoSight's leadership position in nanoparticle characterization.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project