Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Study questions feasibility of entire genome sequencing in minutes

Abstract:
The claim that nanopore technology is on the verge of making DNA analysis so fast and cheap that a person's entire genome could be sequenced in just minutes and at a fraction of the cost of available commercial methods, has resulted in overwhelming academic, industrial, and global interest. But a review by Northeastern University physicist Meni Wanunu, published in a special issue on nanopore sequencing in Physics of Life Reviews, questions whether the remaining technical hurdles can be overcome to create a workable, easily produced commercial device.

Study questions feasibility of entire genome sequencing in minutes

Amsterdam, Netherlands | Posted on October 17th, 2012

Earlier this year Oxford Nanopore Technologies, one of the pioneering companies of sequencing discoveries, announced that they expect nanopore strand sequencing to achieve a 15-minute genome by 2014 at a cost of $1,500. This is a far cry from the $10 million it cost to sequence an entire genome just 5 years ago.

Since the idea of nanopore sequencing was first proposed in the mid 1990s, huge advances have been made. The basic idea is exceedingly simple: a single thread of DNA is passed through a tiny molecule-sized hole—or nanopore—and the various DNA bases are identified in sequence as they move through the pore.

But according to Wanunu, the reality of manipulating technology based on pores so tiny that 25,000 of them can fit side by side on a human hair has proved a daunting task. The main challenge has been to slow the process down and control the movement of the DNA strand through the pore at a rate slow enough to make individual DNA bases readable and usable. A new approach using enzyme-controlled movement, developed to overcome this problem, has its own drawbacks including poor enzyme activity resulting in limited processivity and uncontrolled forward-reverse motion.

Another major dilemma has been whether protein or solid-state pores provide the most promising technique. At first, naturally occurring porous proteins were investigated. But in the early 2000s, heralded as offering better capability and flexibility, various solid-state nanopores made of silicon or graphene were tested. "Since both lipid-embedded protein channels and solid-state nanopores have drawbacks, it will be interesting to see which device, or what combination of devices, will be available in years to come, if any," Wanunu says.

At this time there are still many hurdles to overcome, he adds, including the inability of nanopores to provide any spectroscopic information about the identity of a molecule, uncertainties about whether translocation occurs at a constant speed, and the complications of pore clogging.

Writing in a comment published in the same issue, John Kasianowicz from the National Institute of Standards and Technology in the US, a pioneer in the field, agrees that plenty of challenges remain: "There are indeed still many problems to address in order to enable practical electronic nanopore-based sensing devices. However, by better understanding the road already developed in this nascent field, the journey will hopefully appear a little less daunting,"

In a final comment on Wanunu's review, the founder and Director of Oxford Nanopore, Hagan Bayley, looks ahead to the future: "In the longer term, by using solid-state pores… it may be possible to read DNA sequences at microseconds rather than milliseconds per base. This could be done by using tunnelling currents or other characteristics of the DNA bases for which graphene—with its unusual electronic properties—might after additional development provide a superior substrate and in so doing deliver another massive leap forward on top of a decade of unprecedented progress."

####

About Elsevier
Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

About Physics of Life Reviews

Physics of Life Reviews, with an impact factor of 7.208, is an international journal appearing quarterly, that publishes review articles on physics of living systems, complex phenomena in biological systems, and related fields of artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Physics of Life Reviews ranks as #4 out of 84 journals in the category Biophysics by Thomson Reuters.

For more information, please click here

Contacts:
Mareike Gutschner

31-204-852-656

Copyright © Elsevier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Nanopores: A journey towards DNA sequencing" by Meni Wanunu. The commentaries on the review are: Bio-inspired nanopore-based sensors by John J. Kasianowicz.:

Are we there yet? By Hagan Bayley:

The study and commentaries appear in Physics of Life Reviews Vol 9, Issue 2 (June 2012):

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project