Home > Press > UPC researchers eliminate infectious bacteria from medical textiles
One of the prototype machines used to produce medical textiles based on results generated by the SONO project. |
Abstract:
The Molecular and Industrial Biotechnology Group of the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) has improved the antimicrobial properties of medical textiles using an enzymatic pre-treatment combined with simultaneous deposition of nanoparticles and biopolymers under ultrasonic irradiation.
The technique is used to create completely sterile antimicrobial textiles that help prevent hospital-acquired infections. The research was carried out within the framework of the European SONO project, which received €12 million in funding and involves a consortium of 17 companies and research centres, including the GBMI.
Nosocomial infections—defined as infections not present and without evidence of incubation at the time of admission—remain a significant problem for hospitals.
In an effort to tackle the problem, the European Union is funding the SONO project, which involves the participation of 17 partners, including the Molecular and Industrial Biotechnology Group, which is based at the UPC's Terrassa Campus. The goal is to improve the antimicrobial properties of medical textiles by using ultrasonic irradiation to deposit zinc oxide nanoparticles and biopolymers on these materials.
More durable nanoparticles
The team of researchers—based at the UPC's Terrassa Campus and led by Tzanko Tzanov—used enzymes that improve adhesion of the antimicrobial nanoparticles to the fabric under ultrasonic irradiation. By applying these enzymes, the researchers increased the durability of the nanoparticles on the fabric to such a degree that they remain present even after 70 laundry cycles.
The research conducted by the GBMI paves the way for the production of textiles with antimicrobial properties that are fully effective. The effectiveness of the antimicrobial treatment has also been boosted by incorporating in the fabric hybrid materials that combine organic and inorganic components (zinc and chitosan nanoparticles). In addition to eliminating any bacteria present, these materials prevent the growth of new microbes.
Two prototype machines based on the results generated by the SONO project are now being used to manufacture hospital gowns and linen. One is installed at the facilities of the Italian company KLOPMAN International, the other at the Romanian firm DAVO Clothing. The fabrics produced are currently being tested at a hospital in Sofia (Bulgaria), and the results obtained have been very positive.
Hospital-acquired infections: a growing problem
Factors leading to an increase in the rate of nosocomial infections include a rise in the number of immunocompromised patients, the appearance of resistant microorganisms, the increasing complexity of medical interventions, and the performance of invasive procedures.
Hospital-acquired infections are one of the leading causes of mortality and increased morbidity in inpatients and place a heavy burden on the health system. Between 3 and 10% of inpatients acquire an infection during their hospital stay. The mortality rate for nosocomial infections is 1%, and they contribute to 3% of mortality from other diseases.
As for medical costs, it has been estimated that infections of this type lengthen hospital stays by between five and ten days, a statistic that underscores the economic impact of the problem.
More than 4 million infections a year
Nosocomial infections of endogenous origin occur mainly as a result of contact with hospital gowns and sheets. In fact, any type of linen used in a hospital setting can harbour bacteria and spread infection to patients and medical staff. It is estimated that there are over 4 million hospital-acquired infections each year in Europe. This alarming statistic has driven the development of prophylactic techniques that focus directly on medical textiles. The SONO project, a European initiative aimed at producing smart antibacterial textiles that are 100% effective, is part of this effort.
####
About Universitat Politècnica de Catalunya (UPC)
The Universitat Politècnica de Catalunya is a public institution for research and higher education that specializes in architecture, the sciences and engineering. Our schools –many with roots reaching back centuries– make it a leading institution for basic and applied research and for the training of professionals and researchers whose goal is to work in the knowledge areas we focus on.
Our university is also an academic institution without borders: we’re open to the world and have a distinctly international outlook. As a result of our active participation in international networks of excellence —both European and Latin American— we have a close relationship with prestigious institutions and scientific and educational organizations around the world and are able to collaborate effectively with them. Our laboratories and classrooms are the scene of intense research activity and excellent teaching, and the results achieved have gained widespread recognition. This is particularly true of the UPC’s record on transferring technology and knowledge to the private sector and society in general. Thus our university is a leader when it comes to innovation, entrepreneurship, research and the technological development of the country’s industrial sector. At the same time, according to the SCImago research group, the UPC occupies top positions in its knowledge areas in the ranking of Latin American academic institutions. We’re also a leading university in terms of the number of projects assigned in strategic areas defined in the European Union’s Seventh Framework Programme. But we can’t rest on our laurels –especially not at a time when despite the difficulties we face there are also opportunities to be seized. The debate on the question of what kind of university we want for the year 2020 must contribute to further strengthening our institution.
For more information, please click here
Contacts:
Oficina de Mitjans de Comunicació OMC
+34 93 401 61 43
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Molecular and Industrial Biotechnology Group (GBMI):
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||