Home > Press > sp3 Diamond Technologies Awarded New Patents for Thermal Management in Semiconductor and Laser Applications
Abstract:
sp3 Diamond Technologies, Inc., a leading supplier of diamond products, deposition equipment and services, today announced that it has been awarded two patents by the United States Patent and Trademark Office for its DiaMatch™ coefficient of thermal expansion (CTE) matched heat spreader technology. The diamond-based multilayered structure outlined in the patents solves several technical challenges to deliver the high heat spreading and CTE matching required for reliable semiconductor and laser packaging.
"In 2007, we received Phase II SBIR funding from the Missile Defense Agency to develop a thermal management solution that enables the next generation of high power lasers and semiconductors. We had established solid IP in this area and began providing solutions with great potential that target current and future high-power semiconductor and laser applications," stated Dwain Aidala, president and COO of sp3 Diamond Technologies. "We are currently in the process of identifying the right thermal management or specialized material partners to further develop this technology into a fully productized offering."
U.S. Patent Nos. 8,105,693 and 8,147,927 cover a multilayered structure including at least one diamond layer and methods of making these multilayered structures, respectively. The technology detailed in the patents is ideally suited for mounting large semiconductor chips such as high-power transistors and laser diodes where CTE matching is required.
The proliferation of diamond use in technology has seen a dramatic increase in recent years. Formed in 1993, sp3 Diamond Technologies has been a driving force in that commercialization.
"We experienced our best year ever in 2011 due in large part to two markets," continued Aidala. "We saw our diamond heat spreaders adopted in multiple applications, most notably in wireless base stations where the thermal properties of diamond are paying huge dividends. In CMP pad conditioning we sold five times more CVD diamond deposition tools than the previous year. Diamond is being adopted. While our CVD diamond equipment and our heat spreaders remain our primary focus, we see tremendous opportunity for diamond applications in the future. The potential for diamond layers in the SOI-based process alone creates fantastic growth opportunities."
####
About sp3 Diamond Technologies, Inc.
sp3 Diamond Technologies provides CVD hot filament diamond deposition reactors and diamond-based solutions for electronics thermal management and enhanced wear and cutting surfaces to companies worldwide, across a broad spectrum of industries. By supplying wafer-scale diamond-on-substrate products and services utilizing nano and microcrystalline diamond morphology, sp3 is expanding the commercial reach of polycrystalline CVD diamond.
Founded in 1993 and headquartered in Santa Clara, California, USA, sp3 Diamond Technologies is a subsidiary of sp3 Inc., a privately owned, full service provider of products and services relating to thin film and freestanding diamond deposition and other diamond materials. sp3 Diamond Technologies provides diamond products for advanced thermal applications, diamond coating and material services, hot filament CVD reactors, and deposition consulting services.
About sp3’s DiaMatch Multilayered CTE-Matched Diamond
Semiconductor devices require packaging with high thermal conductivity to prevent overheating and to maintain useful operation of the device. Existing materials generally deliver good thermal characteristics but poor CTE matching, or are well-matched to most semiconductor materials, but do not offer high enough thermal conductivity for today’s devices. sp3’s DiaMatch technology bridges this gap by offering variable CTE-matching, copper-level thermal conductivity, a choice of conductive or insulating die attach surfaces, precise edges and no compositional variability from point to point in the material.
The new patents detail a multilayered structure of thin diamond layers and high thermal conductivity metal layers and the methods of making the structure. The multilayered structure has a variable CTE, which depends on the various layer thicknesses and can be different on each side. This allows the structure to safely bond to common semiconductor materials such as silicon, silicon carbide, gallium arsenide, and gallium nitride while providing the thermal management benefits of diamond.
For more information, please click here
Contacts:
Headquarters:
sp3 Diamond Technologies
1605 Wyatt Drive
Santa Clara, CA 95054
Tel: +1-877-773-9940
Tel: +1-408-492-0630
Fax: +1-408-492-0633
Copyright © sp3 Diamond Technologies, Inc.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||