Home > Press > Electrochromic Bragg mirror
![]() |
Abstract:
Researchers report the first example of an electrochromic Bragg mirror based on nanoporous multilayers of nickel oxide and tungsten trioxide nanoparticles.
Electrochromic materials change their color by electrically induced storage of ions and electrons in the material. This storage can be reversed by applying an opposing electrical bias.
Two prototypical electrochromic materials are tungsten trioxide, W(VI)O3, and nickel oxide, Ni(II)O.
Now, for the first time, both materials have been combined in a single photonic crystal architecture, where tungsten trioxide is the high refractive index component and nickel oxide the low refractive index component.
In contrast to electrochromic photonic crystals based on a single material, an applied potential does not lead to a strong spectral shift of the photonic stop band. Instead, the device behaves as an electrochromic Bragg mirror, where the reflectance can be modulated by the applied potential.
This reflectance modulation may be useful for tunable mirror devices and for grayscale control in reflective displays, such as ebooks.
The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
To get Advanced Optical Materials email alerts: click here:
The paper, “Electrochromic Bragg Mirror: ECBM”, is free to download for a limited time:
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |