Home > Press > Advance in X-ray imaging shines light on nanomaterials
Abstract:
A new advance in X-ray imaging has revealed the dramatic three-dimensional shape of gold nanocrystals, and is likely to shine a light on the structure of other nano-scale materials.
Described today in Nature Communications, the new technique improves the quality of nanomaterial images, made using X-ray diffraction, by accurately correcting distortions in the X-ray light.
Dr Jesse Clark, lead author of the study from the London Centre for Nanotechnology said: "With nanomaterials playing an increasingly important role in many applications, there is a real need to be able to obtain very high quality three dimensional images of these samples.
"Up until now we have been limited by the quality of our X-rays. Here we have demonstrated that with imperfect X-ray sources we can still obtain very high quality images of nanomaterials."
Up until now, most nanomaterial imaging has been done using electron microscopy. X-ray imaging is an attractive alternative as X-rays penetrate further into the material than electrons and can be used in ambient or controlled environments.
However, making lenses that focus X-rays is very difficult. As an alternative, scientists use the indirect method of coherent diffraction imaging (CDI), where the diffraction pattern of the sample is measured (without lenses) and inverted to an image by computer.
Nobel Prize winner Lawrence Bragg suggested this method in 1939 but had no way to determine the missing phases of the diffraction, which are today provided by computer algorithms.
CDI can be performed very well at the latest synchrotron X-ray sources such as the UK's Diamond Light Source which have much higher coherent flux than earlier machines. CDI is gaining momentum in the study of nanomaterials, but, until now, has suffered from poor image quality, with broken or non-uniform density. This had been attributed to imperfect coherence of the X-ray light used.
The dramatic three-dimensional images of gold nanocrystals presented in this study demonstrate that this distortion can be corrected by appropriate modelling of the coherence function.
Professor Ian Robinson, London Centre for Nanotechnology and author of the paper said: "The corrected images are far more interpretable that ever obtained previously and will likely lead to new understanding of structure of nanoscale materials."
The method should also work for free-electron-laser, electron- and atom-based diffractive imaging.
'High-resolution three-dimensional partially coherent diffraction imaging' is published online in the journal Nature Communications. Copies of the paper are available from UCL Media Relations.
####
About University College London
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has 24,000 students from almost 140 countries, and more than 9,500 employees. Our annual income is over £800 million.
For more information, please click here
Contacts:
Clare Ryan
44-020-310-83846
mobile: +44 07747 565 056
out of hours +44 (0)7917 271 364
Copyright © University College London
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |