Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ferroelectricity on the Nanoscale: Berkeley Lab Researchers Say First Atomic-Scale Look at Ferroelectric Nanocrystals Points to Terabytes/Inch Storage

Atomic-resolution images of germanium telluride nanoparticles from Berkeley Lab’s TEAM I electron microscope.
Atomic-resolution images of germanium telluride nanoparticles from Berkeley Lab’s TEAM I electron microscope.

Abstract:
Promising news for those who relish the prospects of a one-inch chip storing multiple terabytes of data, some clarity has been brought to the here-to-fore confusing physics of ferroelectric nanomaterials. A multi-institutional team of researchers, led by scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has provided the first atomic-scale insights into the ferroelectric properties of nanocrystals. This information will be critical for development of the next generation of nonvolatile data storage devices.

Ferroelectricity on the Nanoscale: Berkeley Lab Researchers Say First Atomic-Scale Look at Ferroelectric Nanocrystals Points to Terabytes/Inch Storage

Berkeley, CA | Posted on July 10th, 2012

Working with the world's most powerful transmission electron microscope, the researchers mapped the ferroelectric structural distortions in nanocrystals of germanium telluride, a semiconductor, and barium titanate, an insulator. This data was then combined with data from electron holographic polarization imaging to yield detailed information on the polarization structures and scaling limits of ferroelectric order on the nanoscale.

"As we scale down our device technology from the microscale to the nanoscale, we need a better understanding of how critical material properties, such as ferroelectric behavior, are impacted," says Paul Alivisatos, director of Berkeley Lab and one of the principal investigators in this research. "Our results provide a pathway to unraveling the fundamental physics of nanoscale ferroelectricity at the smallest possible size scales."

Alivisatos, who is also the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley, is a corresponding author of a paper describing this work in the journal Nature Materials titled "Ferroelectric order in individual nanometrescale Crystals." The other corresponding author is Ramamoorthy Ramesh, a senior scientist with Berkeley Lab's Materials Sciences Division and the Plato Malozemoff Professor of Materials Science and Physics for UC Berkeley.

Ferroelectricity is the property by which materials can be electrically polarized, meaning they will be oriented in favor of either a positive or negative electrical charge. This polarization can be flipped with the application of an external electrical field, a property that could be exploited for nonvolatile data storage, similar to the use of ferromagnetic materials today but using much smaller, far more densely packed devices.

"Although much progress has been made towards understanding nanoscale photophysical magnetic and other functional properties, understanding the basic physics of ferroelectric nanomaterials remains far less advanced," says co-principal investigator Ramesh, who attributes contradicting reports on nanoscale ferroelectricity in part to the lack of high-quality, nanocrystals of ferroelectric materials that feature well-defined sizes, shapes and surfaces.

"Another problem has been the reliance on ensemble measurements rather than single particle techniques," he says. "Statistical-average measurement techniques tend to obscure the physical mechanisms responsible for profound changes in ferroelectric behavior within individual nanocrystals."

The Berkeley Lab-led research team was able to map ferroelectric structural distortions within individual nanocrystals thanks to the unprecedented capabilities of TEAM I, which is housed at Berkeley Lab's National Center for Electron Microscopy (NCEM). TEAM stands for "Transmission Electron Aberration-corrected Microscope." TEAM I can resolve images of structures with dimensions as small as one half‑angstrom - less than the diameter of a single hydrogen atom.

The maps produced at TEAM I of ferroelectric distortion patterns within the highly conducting germanium telluride nanocrystals were then compared with electron holography studies of insulating nanocubes of barium titanate, which were carried out by collaborators at Brookhaven National Laboratory (BNL).

"Electron holography is an interferometry technique using coherent electron waves," said BNL physicist and co-author of the Nature Materials paper Myung-Geun Han. "Firing focused electron waves through the ferroelectric sample creates what's called a phase-shift, or an interference pattern that reveals details of the targeted structure. This produces an electron hologram, which we can use to directly see local electric fields of individual ferroelectric nanoparticles."

These combined studies enabled the independent examination of depolarizing field and surface structure influences and thereby enabled the research team to identify the fundamental factors governing the nature of the ferroelectric polarized state at finite dimensions. The results indicate that a monodomain ferroelectric state with linearly ordered polarization remains stable in these nanocrystals down to dimensions of less than 10 nanometers. Also, room-temperature polarization flipping was demonstrated down to dimensions of about five nanometers. Below this threshold, ferroelectric behavior disappeared. This indicates that five nanometers is likely a size limit for data storage applications, the authors state.

"We also showed that ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions," Ramesh says. "Taken together, our results provide a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits."

Also co-authoring the Nature Materials paper in addition to Alivisatos, Ramesh and Han were Mark Polking, Amin Yourdkhani, Valeri Petkov, Christian Kisielowski, Vyacheslav Volkov, Yimei Zhu and Gabriel Caruntu.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, or follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information on the research of Ramamoorthy Ramesh, visit his Website at:

For more information on the research of Paul Alivisatos visit his Website at:

For more about the National Center for Electron Microscopy and TEAM I visit the Website at:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project