Home > Press > Iranian Scientists Synthesize Core-Shell Nanocrystals through Surfactant-Free Technique
Abstract:
Iranian researchers at Ferdowsi University of Mashhad devised a new scheme for preparation of core-shell nanocrystals, by combining the microemulsion and ultrasonication methods, which features moderate synthesis conditions and does not require any surfactants.
The properties of core-shell composites depend heavily on the materials constituting both the core and the shell parts. These compounds offer superiorities in terms of dimension, optical properties, electronic characteristics, etc. so that they have found various applications in photovoltaic cells, optical sensors and catalysis technology, just to mention a few areas.
As reported in a previous work available in the literature, a thin shell of a wide-band gap semiconductor has been deposited upon a small-band gap semiconducting core substrate through an innovative method. Despite its own advantages, the mentioned method is prone to yield non-uniform deposition of inorganic materials on small cores. Besides, the fabrication process demands high temperatures and long aging times as its other downsides.
In an attempt to refine and improve the aforementioned synthesis method, a number of researchers at the Ferdowsi University of Mashhad have come up with core-shell CdS/TiO2 nanocomposites via a surfactant-free approach.
The researchers initially prepared CdS nanoparticles by means of ultrasonication and microemulsification without adding any surfactants. The synthesized nanoparticles were then mixed with TiO2 under ultrasonic irradiation. The latter caused the formation of a thin layer of TiO2 over the CdS nanoparticles and resulted in their swelling. The formation of core-shell structures is due to the involved cavitation phenomenon which forces powerful and high-speed collisions of the nanoparticles. In addition, the ultrasonic waves control the condensation and hydrolysis of titanium tetra isopropoxide as well as shaping of the TiO2 shell.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |