Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCSB Scientists Synthesize First Genetically Evolved Semiconductor Material

First Author
Lukmaan Bawazer
First Author Lukmaan Bawazer

Abstract:
In the not-too-distant future, scientists may be able to use DNA to grow their own specialized materials, thanks to the concept of directed evolution. UC Santa Barbara scientists have, for the first time, used genetic engineering and molecular evolution to develop the enzymatic synthesis of a semiconductor.

UCSB Scientists Synthesize First Genetically Evolved Semiconductor Material

Santa Barbara, CA | Posted on June 13th, 2012

"In the realm of human technologies it would be a new method, but it's an ancient approach in nature," said Lukmaan Bawazer, first author of the paper, "Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles," published in the Proceedings of the National Academy of Sciences. Bawazer, who was a Ph.D. student at the time, wrote the paper with co-authors at UCSB's Interdepartmental Graduate Program in Biomolecular Science and Engineering; Institute for Collaborative Biotechnologies; California NanoSystems Institute and Materials Research Laboratory; and Department of Molecular, Cellular and Developmental Biology. Daniel Morse, UCSB professor emeritus of biochemistry of molecular genetics, directed the research.

Using silicateins, proteins responsible for the formation of silica skeletons in marine sponges, the researchers were able to generate new mineral architectures by directing the evolution of these enzymes. Silicateins, which are genetically encoded, serve as templates for the silica skeletons and control their mineralization, thus participating in similar types of processes by which animal and human bones are formed. Silica, also known as silicon, is the primary material in most commercially manufactured semiconductors.

In this study, polystyrene microbeads coated with specific silicateins were put through a mineralization reaction by incubating the beads in a water-in-oil emulsion that contained chemical precursors for mineralization: metals of either silicon or titanium dissolved in the oil or water phase of the emulsion. As the silicateins reacted with the dissolved metals, they precipitated them, integrating the metals into the resulting structure and forming nanoparticles of silicon dioxide or titanium dioxide.

With the creation of a silicatein gene pool, through what Bawazer only somewhat euphemistically calls "molecular sex" -- the combination and recombination of various silicatein genetic materials -- the scientists were able to create a multitude of silicateins, and then select for the ones with desired properties.

"This genetic population was exposed to two environmental pressures that shaped the selected minerals: The silicateins needed to make (that is, mineralize) materials directly on the surface of the beads, and then the mineral structures needed to be amenable to physical disruption to expose the encoding genes," said Bawazer. The beads that exhibited mineralization were sorted from the ones that didn't, and then fractured to release the genetic information they contained, which could either be studied, or evolved further.

The process yielded forms of silicatein not available in nature, that behaved differently in the formation of mineral structures. For example, some silicateins self-assembled into sheets and made dispersed mineral nanoparticles, as opposed to more typical agglomerated particles formed by natural silicateins. In some cases, crystalline materials were also formed, demonstrating a crystal-forming ability that was acquired through directed evolution, said Bawazer.

Because silicateins are enzymes, said Bawazer, with relatively long amino acid chains that can fold into precise shapes, there is the potential for more functionality than would be possible using shorter biopolymers or more traditional synthetic approaches. In addition, the process could potentially work with a variety of metals, to evolve different types of materials. By changing the laboratory-controlled environments in which directed evolution occurs, it will be possible to evolve materials with specific capacities, like high performance in an evolved solar cell, for example.

"Here we've demonstrated the evolution of material structure; I'd like to take it a step further and evolve material performance in a functional device," said Bawazer.

Research for this paper was supported by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Sonia Fernandez

(805) 893-4765
George Foulsham

(805) 893-3071

Copyright © University of California, Santa Barbara (UCSB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project