Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mirrorcle Technologies’ MEMS mirrors scan full hemisphere

Mirrorcle Hemiscan - Mobile, robust, extreme wide-angle laser scanning system designed for indoor and outdoor use.
Copyright © Mirrorcle Technologies 2012. All rights reserved.
Mirrorcle Hemiscan - Mobile, robust, extreme wide-angle laser scanning system designed for indoor and outdoor use.

Copyright © Mirrorcle Technologies 2012. All rights reserved.

Abstract:
Mirrorcle Technologies, Inc. (MTI), a California-based manufacturer of patented, gimbal-less MEMS micromirror devices announces that it has successfully designed and delivered a battery-powered laser beam scanning system for outdoor use, with the ability to scan multiple laser beams over an entire hemisphere. A customer approached MTI seeking a solution to address various points in a 3D volume (2π steradian solid angle) with powerful visible laser beams for a special application. The unit was to be realized with a relatively small volume, mass, and power consumption, to allow mobile outdoor use over extended periods.

Mirrorcle Technologies’ MEMS mirrors scan full hemisphere

Richmond, CA | Posted on May 31st, 2012

Seven of MTI's MEMS devices and proprietary control electronics were integrated in a prototype system, named Hemiscan (later dubbed "R2" due to its obvious resemblance of the famed movie robot R2-D2). Together the MEMS devices and associated optics provide a scan of 360° in azimuth, and 90° in elevation, in other words covering a full hemisphere. In a compact, light weight, and low power unit, the mirrors provide the customer with the ability to address any point in 3D space above the system's ‘horizon' with a powerful laser beam.

To achieve this, MTI performed an extensive optical design, electronic design and realization of MEMS and laser driver boards and other circuits, complete software development, and subcontracted AdvancedMEMS in Berkeley, CA for the mechanical design of various subsystem and system mounts. After demonstrating the main function and completing indoor tests the customer further ruggedized the unit and integrated thermal control to protect the device from outdoor temperature extremes and moisture condensation.

Hemiscan system features high-power green lasers, whose beams are steered by Mirrorcle Technologies' MEMS devices. Six of these mirrors are arranged in a circular pattern in a plane, and a seventh points upwards, covering the space around the vertical axis of the scanning system. As each of these subunits provides beam steering in >60° field of view, the overall combined effect is 7 beams in a hemisphere space above the device. The 60° FoV of each subunit is enabled by custom optics that help expand addressable angles of the individual mirrors (typically 20° FoV without optical enhancement). With a battery pack and its compact design, this system is highly mobile and can be used anywhere for off-line operation. The housing is designed to withstand harsh environmental conditions, including precipitation, wind and vibrations, and was made for years of outdoors use. Seven integrated, credit-card sized PCBs contain firmware and control electronics for precise mirror movement and synchronized laser control. One of the benefits of MTI's MEMS mirrors is their extremely low power requirement, maximizing the operation time when fully standalone on battery power. The overall power consumption of the prototype demonstration is typically about 30W during continuous operation, including a temperature control unit, which allows long term car- battery run operation.

Full-immersion video gaming environments feasible

"We are very happy to see a multitude of our MEMS devices work in unison," said Dr. Veljko Milanović, CEO of Mirrorcle Technologies, Inc. "So far, we have successfully demonstrated systems using one or two devices, such as for projection and 3D tracking applications. Having 7 of our MEMS mirrors integrated in one comprehensive system we built from scratch is very exciting, and opens the doors for many new applications." Novel display solutions for the entertainment industry come to mind, because MTI's MEMS technology is fully capable of focus-free image projection, including real-color HD video display. With the new setup, any darkened room could become a 3-D video-gaming environment, further improving player immersion and gaming experience. Similarly, this setup could be used in a planetarium or in other entertainment-related applications.

There are possible uses in Air Traffic Management (ATM) or for enemy detection in defense applications. The mirrors could be used to precisely track objects in 3D space. With ever more busy air traffic, it is paramount to supplement conventional radar data with additional detection- and communication solutions. Air Traffic Control (ATC) of the future could use hemispheric laser-based aircraft detection, monitoring and projecting likely trajectories to help avoid collisions. Comprehensive, hemispheric scans of the sky could also be used for defense applications, such as for monitoring air- or submarine environments. The specific benefit of the "R2" prototype that has been developed at Mirrorcle Technologies' Richmond facility is its mobility, robustness and track record of long-term continuous use without failure.

Endless application possibilities with hemispheric scanning capability

"In reality, the range of applications of this novel arrangement of MEMS mirrors is endless," Dr. Milanović concluded. "Apart from its entertainment potential, from laser shows to surround projection, the technology can become beneficial in such varied applications as city planning, tunnel measurement, architectural modeling, archeological documentation, underground mine measurement, submarine mapping and so forth. We simply want people to know of this capability because it is their ideas that can truly make amazing things happen from this."

####

About Mirrorcle Technologies, Inc. (MTI)
Mirrorcle Technologies, Inc. (MTI), founded in 2005, is a California corporation that commercially provides products and services based on its proprietary optical microelectromechanical system (MEMS) technology. Since its founding, and supported by its continuous investment in R&D, MTI has offered the world's fastest point-to-point two-axis beam-steering mirrors, as well as resonating-type micromirror devices with rates up to HD video. MTI is globally the only provider of tip-tilt MEMS actuators in combination with mirrors from 0.8mm to several mm in diameter, offering customers a wide selection of specifications to optimize their paths to successful commercialization. In addition to a variety of existing designs and in-stock products, MTI also contracts to create specialty designs and fabricate custom units for its customers.

In addition to the laboratory at its headquarters, MTI has year-round, 24-7 access to wafer- based CMOS and MEMS fabrication facilities. Micromirror fabrication and wafer-level testing are performed in a clean-room environment. In 2010, MTI established a manufacturing service cooperation with a leading MEMS wafer foundry, allowing the company to ramp up volume-production while maintaining highest quality standards.

As a privately held company, MTI is able to act efficiently, offering creative and highly responsive service to its customers. The motivated staff is dedicated to provide highest- quality products and support to facilitate customers’ product development and successful commercialization. It draws on several decades of staff’s combined experience in MEMS design, fabrication, and testing.

For more information, please click here

Contacts:
Christian Thiel

Tel. 510 524 8820

Copyright © Mirrorcle Technologies, Inc. (MTI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project