Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New ultra-thin electronic films have greater capacity

Macromolecule containing sub-units (blocks) of several types. Here, an assembly of two types of blocks.
Macromolecule containing sub-units (blocks) of several types. Here, an assembly of two types of blocks.

Abstract:
The development of a new combination of polymers associating sugars with oil-based macromolecules makes it possible to design ultra-thin films capable of self-organization with a 5-nanometer resolution. This opens up new horizons for increasing the capacity of hard discs and the speed of microprocessors. The result of a French-American collaboration spearheaded by the Centre de Recherches sur les Macromolécules Végétales (CNRS), this work has led to the filing of two patents. It is published in the journal ACS Nano. This new class of thin films based on hybrid copolymers could give rise to numerous applications in flexible electronics, in areas as diverse as nanolithography, biosensors and photovoltaic cells.

New ultra-thin electronic films have greater capacity

Paris, France | Posted on May 12th, 2012

Before new generations of microprocessors can be devised, an evolution in lithography, the technique used for printing electronic circuits, is indispensable. Until now, the thin films used in electronic circuits have been designed from synthetic polymers exclusively derived from petroleum. However, these thin films have limitations: their minimum structural resolution is around 20 nanometers and cannot be reduced further by combining petroleum-derived polymers. This limit has been one of the main obstacles to the development of new generations of very-high-resolution flexible electronic devices.

Why was there such a limit? Because of the low incompatibility between the two blocks of polymers, both derived from oil. For that reason, the team headed by Redouane Borsali, CNRS senior researcher at the Centre de Recherches sur les Macromolécules Végétales (CERMAV), came up with a hybrid material: this new class of thin films combines sugar-based and petroleum-derived (silicon containing polystyrene) polymers with widely different physical/chemical characteristics. This copolymer(1), formed of highly incompatible elementary building blocks, is similar to an oil bubble attached to a small water bubble. The researchers have shown that this type of structure is capable of organizing itself into sugar cylinders within a petroleum-based polymer lattice, each structure having a size of 5 nanometers, i.e. much smaller than the resolution of "old" copolymers, exclusively composed of petroleum derivatives. In addition, this new generation of material is made from an abundant, renewable and biodegradable resource: sugar.

Achieving this performance makes it possible to envisage numerous applications in flexible electronics: miniaturization of circuit lithography, six-fold increase in information storage capacity (flash memories - USB keys - no longer limited to 1 Tbit of data but 6 Tbit), enhanced performance of photovoltaic cells, biosensors, etc. The researchers are now seeking to improve control of these nano-glycofilms' large-scale organization and design in different self-organized structures.

These results follow prior work carried out by CERMAV within the framework of the Grenoble RTRA (Thematic Network of Advanced Research) "Nanosciences at the limits of nanolectronics".

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


CNRS researcher
Redouane Borsali
T +33 (0)4 76 03 76 40 l

CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project