Home > Press > Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.
![]() |
Sergey Lisenkov |
Abstract:
A team of physicists from the University of South Florida and the University of Kentucky have taken a big step toward the development of practical spintronics devices, a technology that could help create faster, smaller and more versatile electronic devices.
The research funded by the U.S. Department of Energy was led by USF Physicist Sergey Lisenkov and Professor Madhu Menon at Kentucky's Center for Computational Sciences. Their findings were published this week in Physical Review Letters.
Lisenkov said an important step toward fabrication of the "holy grail" of spintronics is finding a semiconductor that has a net 'spin' at room temperature. The biggest challenge, however, is how to set the spin and in what material.
The USF-Kentucky team showed that a simple combination of metal atoms and a flat sheet of one atom- thick layer of pure carbon called graphene can be suitably engineered and used for this purpose.
Graphene is a relatively tangible material that can be made by peeling ordinary graphite (the same material in lead pencils) with common transparent tape. Graphene boasts properties such as a breaking strength 200 times greater than steel. It is of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.
Spintronic devices are hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics and use less energy.
Spin is a quantum mechanical property with directional values "up" or "down". This is analogous to the "on"' or "off"' values used with binary digital coding in modern computers. The advantage of spintronic devices is once the direction of the spin is set, no energy is required to keep it going. The spin-based data storage doesn't disappear when the electric current stops.
Using state-of-the-art theoretical computations, the research team demonstrated that by placing cobalt atoms in graphene holes - created by removing one or two nearby carbon atoms - it is possible to set the spins in a controlled manner. That, the researchers said, is the key to practical spintronics application for graphene.
####
For more information, please click here
Contacts:
Sergey Lisenkov
813/974-2871
Copyright © University of South Florida
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
To read their complete paper, click here:
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |