Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Abstract:
Researchers at Tarbiat Modarres University together with their colleagues from the Islamic Azad University proposed aluminum nitride nanotubes as a potential sensing element for the poisonous and carcinogenic formaldehyde gas with the help of computer modeling and analysis.

Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Tehran, Iran | Posted on May 5th, 2012

Today, formaldehyde marks as a highly-used chemical compound in industrial applications though being proved carcinogenic. Carbon nanotubes, on the other hand, have been investigated as formaldehyde gas sensors, however there found to be difficulties in segregation of semiconductive and conductive CNTs as well as limited reactivity of the CNTs and the gas.

Nanotubular structure of aluminum nitride which exhibits semi-conductive properties - unlike the nonconductive bulk aluminum nitride - has attracted the attention of the mentioned researchers in this regard. The outcomes of the research work revealed that aluminum nitride nanotubes are promising in detection of the toxic formaldehyde gas.

"The results indicate that the adsorption of formaldehyde upon the aluminum nitride nanotubes is in favor of their electrical conductance. Therefore, provided that an AlN nanotube is placed in an electric circuit, we can read an electrical signal as soon as a few formaldehyde molecules are adsorbed," Ahmadi, a member of the research group, said , describing the conceptual sensor's mechanism.

Based on the findings of this research, the adsorption of formaldehyde on aluminum nitride nanotubes immediately causes charge transfer and narrows the energy gap which in turn increases the electric conductance of the tubes. A short response time, high selective operation, favorable degree of recovery, and being free of further treatments are among the advantages of this model sensor.

The researchers hope their study will motivate experimental efforts for the synthesis of AlN nanotube based formaldehyde sensors.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project