Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Designing Nanomaterials for Drug Delivery

Confocal laser scanning microscopy images of the protein-based nanoparticles incubated with breast cancer cells.
Confocal laser scanning microscopy images of the protein-based nanoparticles incubated with breast cancer cells.

Abstract:
Natural biological entities have been highly successful in fabricating nanoscale structures and functional systems, leading to scientific exploration of biologically inspired strategies for materials design. In particular, protein-based materials can combine natural properties, structural elements, and biologically reactive sites to obtain self-assembled nanoarchitectures with applications including tissue engineering, nanomaterials synthesis, and drug delivery. However, the functionality of these materials can be limited by the locations or absence of specific chemical conjugation sites.

Designing Nanomaterials for Drug Delivery

Germany | Posted on April 26th, 2012

To circumvent this limitation, an investigation by Ren et al., at the University of California, Irvine, implemented a novel, non-covalent strategy to attach guest molecules into a protein-based nanocapsule. Their biomimetic inspiration was multi-drug efflux transporters, which bind a remarkably broad range of structurally-divergent molecules using phenylalanine, a hydrophobic amino acid. Through protein engineering, the team introduced targeted non-native phenylalanines into the hollow cavity of a caged protein scaffold.

The transformed nanoparticles enabled the antitumor drug doxorubicin to bind to the cavity at high loading capacities. These drug-protein complexes could subsequently be applied to induce death in breast cancer cells. Significantly, this work demonstrates a generalized strategy to engineer binding domains within protein-based materials that does not rely on conventional chemical coupling, thus extending the potential functionality of such materials.

Source: University of California, Irvine

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project