Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ORNL microscopy inspires flexoelectric theory behind 'material on the brink'

Abstract:
Electron microscopy, conducted as part of the Shared Research Equipment (ShaRE) User Program at the Department of Energy's Oak Ridge National Laboratory, has led to a new theory to explain intriguing properties in a material with potential applications in capacitors and actuators.

ORNL microscopy inspires flexoelectric theory behind 'material on the brink'

Oak Ridge, TN | Posted on April 14th, 2012

A research team led by ORNL's Albina Borisevich examined thin films of bismuth samarium ferrite, known as BSFO, which exhibits unusual physical properties near its transition from one phase to another. BSFO holds potential as a lead-free substitute for lead zirconium titanate (PZT), a similar material currently used in dozens of technologies from sensors to ultrasound machines.

Materials such as BSFO and PZT are often called "materials on the brink" in reference to their enigmatic behavior, which is closely tied to the transition between two different phases. These phases are characterized by structural changes in the material that produce different electrical properties.

"The best properties of the material are found at this transition," Borisevich said. "However, there has been a lot of discussion about what exactly happens that leads to an enhancement of the material's properties."

Using scanning transmission electron microscopy, the team mapped the position of atoms in BSFO films to find what happens to the local structure at the transition between ferroelectric and antiferroelectric phases. The team's results are published in Nature Communications.

"We discovered that neither of the two dominant theories could describe the observed behavior at the atomic scale," Borisevich said.

Some theorists have proposed that the material forms a nanocomposite at the transition. In this case, the energy of the boundaries between phases would have to approach zero, but Borisevich's team found experimentally something entirely different: the boundary's energy was instead effectively negative.

"When the energy of boundary is negative, it means that the system wants to have as many boundaries as possible, but with atom sizes being finite, you can't increase it to infinity," Borisevich said. "So you have to stop at some short-period modulated structure, which is what happens here."

Based on its observations, the team concluded that the mechanism behind the observed behavior was linked to a relatively weak interaction called flexoelectricity.

"Flexoelectricity means that you bend a material and it polarizes," said ORNL coauthor Sergei Kalinin. "It's a property present in most ferroelectrics. The effect itself is not necessarily very strong on macroscopic scales, but with the right conditions, which are realized in nanoscale systems, it can produce very interesting consequences."

Borisevich adds that the team's approach can be used to investigate a variety of systems with similar phase boundaries, and she emphasizes the importance of mapping out materials at the atomic scale.

"In this particular case, electron microscopy is the only way to look at very local changes because this material is a periodic structure," she said. "The decisive atomic-scale information had been missing from the discussion."

Researchers include National Academy of Sciences of Ukraine's Eugene Eliseev and Anna Morozovska; University of New South Wales's Ching-Jung Cheng and Valanoor Nagarajan; National Chiao Tung University's Jiunn-Yuan Lin and Ying-Hao Chu; and University of Maryland's Daisuke Kan and Ichiro Takeuchi. The full paper is available online here: www.nature.com/ncomms/journal/v3/n4/full/ncomms1778.html.

This work was supported by DOE's Office of Science, which sponsors the Shared Research Equipment (ShaRE) User Facility.

####

About Oak Ridge National Laboratory
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

For more information, please click here

Contacts:
Morgan McCorkle
Communications and Media Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project