Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Public University of Navarre researchers participate in project for design and manufacture of composite PVC materials based on nanofillings

Abstract:
Researchers at the Public University of Navarre (UPNA) are taking part in a project for the design and manufacture of composite PVC materials based on nanofillings, the aim being to control and optimise the photostability thermal resistance and the permeation of gases of the plastic material. Also involved in the project are the Compuestos y Granzas, S.A. (CYGSA) company and the L'Urederra Technological Centre. The project will last until December 2012.

Public University of Navarre researchers participate in project for design and manufacture of composite PVC materials based on nanofillings

Usurbil, Basque Country | Posted on March 21st, 2012

The project is to develop nanofilled polymer composite materials through the synthesis and treatment of nanoclays introduced into the matrix of the polymer.

In the first place the aim is to enhance the photostability properties of the polymers. Ultraviolet rays, responsible for the accelerated degradation of the polymers, cause discolouration and loss of performance of the material, thus shortening their useful life. Nanofilled polymer composites are developed through the synthesis and treatment of nanoclays incorporated into the matrix of the polymer. This incorporation of molecules capable of absorbing luminous radiation increases the resistance of the compound to UV radiation

The second objective was the enhancement of refractory properties. The nanofillers have the ability to act as mechanical reinforcements and, at the same time, as fire retardants, in such a way that the new materials can increase the thermal stability of the material, reducing the emission of gases in the case of combustion and halting the deterioration of mechanical properties which other fire retardants cause.

Finally, the improvement of permeation properties of materials means the development of new formulas with barrier properties for gases and low molecular weight volatile organic molecules thanks to the addition of the nanofillers. In this way reducing the diffusion of gases through the modified polymers will be achieved.

The members of the team involved in the project are lecturers at the Department of Applied Chemistry, Antonio Gil and Sophia A. Korili, and project assistant Saioa Albeniz.

####

For more information, please click here

Contacts:
Aitziber Lasa Iglesias

34-943-363-040

Ana Ollo Hualde
Nafarroako Unibertsitate Publikoa

(+34) 948 169033

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Documents:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project