Home > Press > Nerve cells grow on nanocellulose
Nerve cells growing on a three-dimensional nanocellulose scaffold. One of the applications the research group would like to study is destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. Synapses are the connections between nerve cells. In the image, the functioning synapses are yellow and the red spots show where synapses have been destroyed.
Illustration: Philip Krantz |
Abstract:
Researchers from Chalmers and the University of Gothenburg have shown that nanocellulose stimulates the formation of neural networks. This is the first step toward creating a three-dimensional model of the brain. Such a model could elevate brain research to totally new levels, with regard to Alzheimer's disease and Parkinson's disease, for example.
Over a period of two years the research group has been trying to get human nerve cells to grow on nanocellulose.
"This has been a great challenge," says Paul Gatenholm, Professor of Biopolymer Technology at Chalmers.‟Until recently the cells were dying after a while, since we weren't able to get them to adhere to the scaffold. But after many experiments we discovered a method to get them to attach to the scaffold by making it more positively charged. Now we have a stable method for cultivating nerve cells on nanocellulose."
When the nerve cells finally attached to the scaffold they began to develop and generate contacts with one another, so-called synapses. A neural network of hundreds of cells was produced. The researchers can now use electrical impulses and chemical signal substances to generate nerve impulses, that spread through the network in much the same way as they do in the brain. They can also study how nerve cells react with other molecules, such as pharmaceuticals.
The researchers are trying to develop ‟artificial brains", which may open entirely new possibilities in brain research and health care, and eventually may lead to the development of biocomputers. Initially the group wants to investigate destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer's disease. For example, they would like to cultivate nerve cells and study how cells react to the patients' spinal fluid.
In the future this method may be useful for testing various pharmaceutical candidates that could slow down the destruction of synapses. In addition, it could provide a better alternative to experiments on animals within the field of brain research in general.
The ability to cultivate nerve cells on nanocellulose is an important step ahead since there are many advantages to the material.
‟Pores can be created in nanocellulose, which allows nerve cells to grow in a three-dimensional matrix. This makes it extra comfortable for the cells and creates a realistic cultivation environment that is more like a real brain compared with a three-dimensional cell cultivation well," says Paul Gatenholm.
Paul Gatenholm says that there are a number of new biomedical applications for nanocellulose. He is currently also leading other projects that use the material, for example a project where researchers are using nanocellulose to develop cartilage to create artificial outer ears. His research group has previously developed artificial blood vessels made of nanocellulose, which are being evaluated in pre-clinical studies.
Research on new application areas for nanocellulose is of major strategic significance for Sweden. Several projects are financed by the Knut and Alice Wallenberg Foundation and being conducted in collaboration between Chalmers and KTH within the Wallenberg Wood Science Center, WWSC.
Facts about nanocellulose:
Nanocellulose is a material that consists of nanosized cellulose fibers. Typical dimensions are widths of 5 to 20 nanometers and lengths of up to 2,000 nanometers. Nanocellulose can be produced by bacteria that spin a close-meshed structure of cellulose fibers. It can also be isolated from wood pulp through processing in a high-pressure homogenizer.
The first medical student has conducted a degree project at Chalmers:
Members of the research group are: Marcus Innala (University of Gothenburg), Volodymyr Kuzmenko (Chalmers), Eric Hanse (University of Gothenburg), Sara Johannesson (Chalmers) and Paul Gatenholm (Chalmers). Marcus Innala is a medical student who presents his degree project on March 19th. This is the first time a medical student has conducted his degree project at Chalmers.
####
About Chalmers University of Technology
Chalmers University of Technology performs research and education in technology, science and architecture, with a sustainable future as overall vision. Chalmers is well-known for providing an effective environment for innovation and has eight Areas of Advance – Built Environment, Energy, Information and Communication Technology, Life Science, Materials Science, Nanoscience and Nanotechnology, Production, and Transportation. Situated in Gothenburg, Sweden, Chalmers has 13,000 students and 2,500 employees.
For more information, please click here
Contacts:
Christian Borg
+46 - (0)31 772 3395
Paul Gatenholm
Biopolymer Technology
Chalmers University of Technology
+46 31-772 3407
+46 707-535750
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The results will be presented at the American Chemical Society Meeting in San Diego, 25 March:
Read more about artificial outer ears:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Brain-Computer Interfaces
Taking salt out of the water equation October 7th, 2022
New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||