Home > Press > ERC Grant for spintronics: Spinning electrons as information carriers
Abstract:
Electrons spin around their own axis, a property that could form the basis of futuristic high-speed, low-cost electronics. Researcher Michel de Jong of the NanoElectronics group (MESA+) plans to base these "spintronics" on organic materials. He has obtained a Starting Grant of €1.5 million from the European Research Council to fund this work.
This is the second major ERC Grant to be awarded to Prof. Wilfred van der Wiel's group. The professor himself obtained a similar European grant in 2009. So this area of research seems to be attracting considerable attention. This new approach may represent a decisive step towards the next generation of electronic components, which will be more compact, faster, and cheaper.
The beauty of an electron's spin is that it responds very rapidly to small magnetic fields. Such external magnetic fields can be used to reverse the direction of spin. In this way, information can be carried by a flow of electrons. For instance, electrons with a left-hand spin could represent a "1", and those with a right-hand spin, a "0". It takes less time to flip the spin direction than it does to switch a current on or off. Accordingly, spintronics could potentially be very fast and extremely compact.
Organic materials
However, this would require a material that combines the characteristics of a semiconductor (such as silicon, the most widely used material in the chip industry) with magnetic properties. Research in this area (including work by Michel de Jong) has already delivered results. However, finding materials with this combination of properties is far from simple. For this reason, Michel de Jong is now hunting for an alternative. He is focusing on semiconductors consisting of carbohydrate chains, in other words, organic materials. "Such materials are already being used in the displays of the latest smart phones. Indeed, they are very much the 'in' thing. I expect it will ultimately be possible to make very cheap electronics from these materials, leading to a wide range of new applications. For instance, if supermarkets want to tag their products with pricing information, then the electronics involved will have to cost next to nothing."
Buckyballs
De Jong has been experimenting with buckyballs (spherical C60 molecules held together by weak bonds) sandwiched between two magnetic materials. "The great advantage of these molecules is that they have very little effect on electron spin. This enables them to store spin information for much longer periods of time than silicon." Depending on the orientation of the magnetic field in the upper and lower layers of magnetic material, electrons with the same direction of spin are either allowed through or held back, as if a valve were being opened or closed. This would make it possible to create sensitive magnetic sensors, for example. The "sandwich" might also form the basis for new electronic components that make use of spin.
"If we are to make truly effective components, we will need a detailed understanding of events at the interface between the magnetic and organic materials. However, this will require improvements in the quality of such interfaces. The current techniques for applying metallic layers to organic layers do not produce good interconnections. The organic material contains cavities that can fill with metal. This results in unpredictable behaviour. Over the next five years we will be seeking to improve the manufacturing process. This will help us to understand what exactly happens at the interface. I propose to use part of the ERC Grant for this purpose. It will enable me to take on two PhD students and a postdoctoral researcher."
####
For more information, please click here
Contacts:
Wiebe van der Veen
tel. +31-(0)53-4894244
Copyright © University of Twente
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Spin photonics to move forward with new anapole probe November 4th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||