Home > Press > Down to the wire: Silicon links shrink to atomic scale: Silicon links shrink to atomic scale
Michelle Simmons and Bent Weber from UNSW |
Abstract:
- The narrowest conducting wires in silicon ever produced are shown to have the same electrical current carrying capability as copper, as published in Science.
- This means electrical interconnects in silicon can be shrunk to the atomic-scale without losing their functionality - Ohm's law holds true at the atomic-scale.
- UNSW researchers will use these wires to address individual atoms - a key step in realising a scalable quantum computer.
The narrowest conducting wires in silicon ever made - just four atoms wide and one atom tall - have been shown to have the same electrical current carrying capability of copper, according to a new study published today in the journal Science.
Despite their astonishingly tiny diameter - 10,000 times thinner than a human hair - these wires have exceptionally good electrical properties, raising hopes they will serve to connect atomic-scale components in the quantum computers of tomorrow.
"Interconnecting wiring of this scale will be vital for the development of future atomic-scale electronic circuits," says the lead author of the study, Bent Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation and Communication Technology at the University of New South Wales, in Sydney, Australia.
The wires were made by precisely placing chains of phosphorus atoms within a silicon crystal, according to the study, which includes researchers from the University of Melbourne and Purdue University in the US.
The researchers discovered that the electrical resistivity of their wires - a measure of the ease with which electrical current can flow - does not depend on the wire width. Their behaviour is described by Ohm's law, which is a fundamental law of physics taught to every high school student.
"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature - atoms," says Weber.
The discovery demonstrates that electrical interconnects in silicon can shrink to atomic dimensions without loss of functionality, says the Centre's Director and leader of the research, Professor Michelle Simmons.
"Driven by the semiconductor industry, computer chip components continuously shrink in size allowing ever smaller and more powerful computers," Simmons says.
"Over the past 50 years this paradigm has established the microelectronics industry as one of the key drivers for global economic growth. A major focus of the Centre of Excellence at UNSW is to push this technology to the next level to develop a silicon-based quantum computer, where single atoms serve as the individual units of computation," she says.
"It will come down to the wire. We are on the threshold of making transistors out of individual atoms. But to build a practical quantum computer we have recognised that the interconnecting wiring and circuitry also needs to shrink to the atomic scale."
Creating such tiny components has been made possible using a technique called scanning tunnelling microscopy. "This technique not only allows us to image individual atoms but also to manipulate them and place them in position," says Weber.
####
About University of New South Wales
The University of New South Wales is one of Australia’s leading research and teaching universities, ranked in the top 50 universities worldwide and renowned for the quality of its graduates.
UNSW is a founding member of the prestigious Group of Eight - a coalition of Australia’s leading research intensive universities.
Recognised as one of the heavyweights of Australian higher education, UNSW consistently scores highly in a range of national and international rankings.
For more information, please click here
Contacts:
Professor Michelle Simmons
61-425-336-756
UNSW Media Office
Mary O'Malley
61-438-881-124
Copyright © University of New South Wales
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||