Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Down to the wire: Silicon links shrink to atomic scale: Silicon links shrink to atomic scale

Michelle Simmons and Bent Weber from UNSW
Michelle Simmons and Bent Weber from UNSW

Abstract:
- The narrowest conducting wires in silicon ever produced are shown to have the same electrical current carrying capability as copper, as published in Science. - This means electrical interconnects in silicon can be shrunk to the atomic-scale without losing their functionality - Ohm's law holds true at the atomic-scale. - UNSW researchers will use these wires to address individual atoms - a key step in realising a scalable quantum computer.

Down to the wire: Silicon links shrink to atomic scale: Silicon links shrink to atomic scale

Sydney, Australia | Posted on January 7th, 2012

The narrowest conducting wires in silicon ever made - just four atoms wide and one atom tall - have been shown to have the same electrical current carrying capability of copper, according to a new study published today in the journal Science.

Despite their astonishingly tiny diameter - 10,000 times thinner than a human hair - these wires have exceptionally good electrical properties, raising hopes they will serve to connect atomic-scale components in the quantum computers of tomorrow.

"Interconnecting wiring of this scale will be vital for the development of future atomic-scale electronic circuits," says the lead author of the study, Bent Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation and Communication Technology at the University of New South Wales, in Sydney, Australia.

The wires were made by precisely placing chains of phosphorus atoms within a silicon crystal, according to the study, which includes researchers from the University of Melbourne and Purdue University in the US.

The researchers discovered that the electrical resistivity of their wires - a measure of the ease with which electrical current can flow - does not depend on the wire width. Their behaviour is described by Ohm's law, which is a fundamental law of physics taught to every high school student.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature - atoms," says Weber.

The discovery demonstrates that electrical interconnects in silicon can shrink to atomic dimensions without loss of functionality, says the Centre's Director and leader of the research, Professor Michelle Simmons.

"Driven by the semiconductor industry, computer chip components continuously shrink in size allowing ever smaller and more powerful computers," Simmons says.

"Over the past 50 years this paradigm has established the microelectronics industry as one of the key drivers for global economic growth. A major focus of the Centre of Excellence at UNSW is to push this technology to the next level to develop a silicon-based quantum computer, where single atoms serve as the individual units of computation," she says.

"It will come down to the wire. We are on the threshold of making transistors out of individual atoms. But to build a practical quantum computer we have recognised that the interconnecting wiring and circuitry also needs to shrink to the atomic scale."

Creating such tiny components has been made possible using a technique called scanning tunnelling microscopy. "This technique not only allows us to image individual atoms but also to manipulate them and place them in position," says Weber.

####

About University of New South Wales
The University of New South Wales is one of Australia’s leading research and teaching universities, ranked in the top 50 universities worldwide and renowned for the quality of its graduates.

UNSW is a founding member of the prestigious Group of Eight - a coalition of Australia’s leading research intensive universities.

Recognised as one of the heavyweights of Australian higher education, UNSW consistently scores highly in a range of national and international rankings.

For more information, please click here

Contacts:
Professor Michelle Simmons
61-425-336-756

UNSW Media Office
Mary O'Malley
61-438-881-124

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project