Home > Press > N.E. Chemcat Corporation Licenses Brookhaven Lab's Electrocatalyst Technology for Fuel Cells in Electric Vehicles
![]() |
(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory. |
Abstract:
N.E. Chemcat Corporation, Japan's leading catalyst and precious metal compound manufacturer, has licensed electrocatalysts developed by scientists at the U.S. Department of Energy's Brookhaven National Laboratory that can reduce the use of costly platinum and increase the effectiveness of fuel cells for use in electric vehicles. In addition, the license includes innovative methods for making the catalysts and an apparatus design used in manufacturing them.
Platinum is the most efficient electrocatalyst for fuel cells, but platinum-based catalysts are expensive, unstable, and have low durability. The newly licensed electrocatalysts have high activity, stability, and durability, while containing only about one tenth the platinum of conventional catalysts used in fuel cells, reducing overall costs.
The electrocatalysts consist of a palladium or a palladium alloy nanoparticle core covered with a monolayer - one-atom thick - platinum shell. This palladium-platinum combination notably improves oxygen reduction at the cathode of a hydrogen/oxygen fuel cell. This type of fuel cell produces electricity using hydrogen as fuel, and forms water as the only byproduct.
Radoslav Adzic, the Brookhaven Lab senior chemist who led the team that developed the catalysts, said, "We are delighted that N.E. Chemcat Corporation has licensed our platinum monolayer electrocatalyst technology. We hope that it will facilitate the development of affordable and reliable fuel cell electric vehicles, which would be very beneficial for the environment since they produce no harmful emissions. Also, the use of nonrenewable fossil fuels for transportation that contribute to global warming would be greatly reduced, prolonging their availability for other uses in the future."
The U.S. Department of Energy's Office of Science and its Office of Energy Efficiency and Renewable Energy funded research that contributed to these licensed technologies. Besides Adzic, those who contributed to the research include Brookhaven chemists Jia Wang, Kotaro Sasaki, and Miomir Vukmirovic, and postdoctoral fellows Junliang Zhang and Yibo Mo.
####
About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
For more information, please click here
Contacts:
Diane Greenberg
631) 344-2347
or
Peter Genzer
(631) 344-3174
Copyright © Brookhaven National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |