Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sorting out the nanotubes, for better electronics

Francois Gygi and Giulia Galli / UC-Davis
A computer-generated cross section of the polymer-coated carbon nanotube. The polymer shell (blue) wraps around a semiconducting single-walled carbon nanotube (red).
Francois Gygi and Giulia Galli / UC-Davis

A computer-generated cross section of the polymer-coated carbon nanotube. The polymer shell (blue) wraps around a semiconducting single-walled carbon nanotube (red).

Abstract:
A new technique developed by Stanford researchers advances commercial potential of semiconducting carbon nanotubes for printable circuits, bendable display screens, stretchable electronics and solar technology.

Sorting out the nanotubes, for better electronics

Stanford, CA | Posted on November 18th, 2011

BY SARAH JANE KELLER

Carbon nanotubes could make many electronic devices cheaper and more efficient. But when nanotubes are manufactured, tubes that work for solar cells are mixed with tubes that work for batteries. The final product is a nanotube powder that is not ideal for any single commercial application.

Zhenan Bao, Stanford associate professor of chemical engineering, and her colleagues at University of California-Davis and the Samsung Advanced Institute of Technology have discovered a technique to selectively sort semiconducting single-walled carbon nanotubes from the mixture. The results appear online in Nature Communications.

The semiconducting nanotubes could be used in flexible transistors for other technologies that Bao's group develops, including circuits printed on plastic, bendable display screens and stretchable electronics. The nanotubes could also close gaps in solar cell technology.

"Sorting has been a major bottleneck for carbon nanotubes to be viable for practical electronics applications," Bao said. "This work solves the problem of separating the conducting from the semiconducting nanotubes."

Conducting tubes are used in wires and electrodes but semiconducting tubes are the active material for transistors or solar cells. Mixtures of conducting and semiconducting tubes do not carry enough current for wires or battery electrodes. And when the mixture is used for semiconducting, as in a transistor, the excess current from the conducting nanotubes will short the device.

Bao's group uses a polymer that selectively sorts the mixture by wrapping around semiconducting nanotubes, and not conducting nanotubes. Mixing the polymer with commercially available carbon nanotubes in a solvent separates semiconducting tubes from conducting tubes.

In her past work with the polymer, Bao was the first to find that it has good semiconducting properties in transistors. It is now the most widely studied polymer for plastic circuits and plastic transistors and also for plastic solar cells. Bao's group is the first to combine it with semiconducting carbon nanotubes.

This is not the first time a polymer has been used to sort conducting and semiconducting nanotubes. However, past polymers have insulated the nanotubes and required extensive removal treatments to restore the conductivity of the nanotubes.

The polymer in Bao's process does not need to be removed. The final product is a semiconducting nanotube and polymer ink that can be used to make printable electronics.

"Our simple process allows us to build useful devices very easily," she said.

The group tested nearly 200 individual nanotubes to confirm that the polymer only wraps around semiconducting tubes and not conducting tubes. To explain how the polymer wraps around the carbon nanotube, UC-Davis collaborators Giulia Galli and Francois Gygi modeled the geometry of a semiconducting carbon nanotube and its polymer shell.

According to Galli, the model provides "a theoretical explanation of how this polymer actually interacts with the nanotube." The polymer has a long, rigid backbone, with regular arm-like molecular chains along each side. The side chains fit together like fingers, making a ribbon of polymer that wraps around the semiconducting nanotubes.

Bao's work with nanotubes is part of her long-term collaboration with the Samsung Advanced Institute of Technology. "I'm especially happy that this polymer can now be used to sort nanotubes," Bao said. "It merges two very important materials together and makes a hybrid material that could be very useful for printed and flexible electronics."

Jeffrey B.-H. Tok, senior research engineer; Andrew Spakowitz, assistant professor of chemical engineering; and H.S.Philip Wong, professor of electrical engineering, contributed to the research. Chemical engineering graduate student Hang Woo Lee, materials science and engineering graduate students Steve Park and Huiliang Wang also contributed, as well as Satoshi Morishita of chemical engineering,

Luckshitha S. Liyanage of electrical engineering and Nishant Patil of electrical engineering.

The Samsung Advanced Institute of Technology and the National Science Foundation provided funding for the research.

Sarah Jane Keller is a science-writing intern at the Stanford News Service.

####

For more information, please click here

Contacts:
Zhenan Bao
Department of Chemical Engineering
(650) 723-2419


Dan Stober
Stanford News Service:
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project